feat(tools): use { input_schema, output_schema } for ToolDefinition

This commit is contained in:
Ashwin Bharambe 2025-09-30 19:13:15 -07:00
parent 42414a1a1b
commit 139320e19f
20 changed files with 1989 additions and 386 deletions

View file

@ -7383,12 +7383,57 @@
"type": "string", "type": "string",
"description": "(Optional) Human-readable description of what the tool does" "description": "(Optional) Human-readable description of what the tool does"
}, },
"parameters": { "input_schema": {
"type": "array", "type": "object",
"items": { "additionalProperties": {
"$ref": "#/components/schemas/ToolParameter" "oneOf": [
{
"type": "null"
}, },
"description": "(Optional) List of parameters this tool accepts" {
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "(Optional) JSON Schema for tool inputs (MCP inputSchema)"
},
"output_schema": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "(Optional) JSON Schema for tool outputs (MCP outputSchema)"
}, },
"metadata": { "metadata": {
"type": "object", "type": "object",
@ -7424,68 +7469,6 @@
"title": "ToolDef", "title": "ToolDef",
"description": "Tool definition used in runtime contexts." "description": "Tool definition used in runtime contexts."
}, },
"ToolParameter": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "Name of the parameter"
},
"parameter_type": {
"type": "string",
"description": "Type of the parameter (e.g., string, integer)"
},
"description": {
"type": "string",
"description": "Human-readable description of what the parameter does"
},
"required": {
"type": "boolean",
"default": true,
"description": "Whether this parameter is required for tool invocation"
},
"items": {
"type": "object",
"description": "Type of the elements when parameter_type is array"
},
"title": {
"type": "string",
"description": "(Optional) Title of the parameter"
},
"default": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
],
"description": "(Optional) Default value for the parameter if not provided"
}
},
"additionalProperties": false,
"required": [
"name",
"parameter_type",
"description",
"required"
],
"title": "ToolParameter",
"description": "Parameter definition for a tool."
},
"TopKSamplingStrategy": { "TopKSamplingStrategy": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -13132,6 +13115,68 @@
"title": "Tool", "title": "Tool",
"description": "A tool that can be invoked by agents." "description": "A tool that can be invoked by agents."
}, },
"ToolParameter": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "Name of the parameter"
},
"parameter_type": {
"type": "string",
"description": "Type of the parameter (e.g., string, integer)"
},
"description": {
"type": "string",
"description": "Human-readable description of what the parameter does"
},
"required": {
"type": "boolean",
"default": true,
"description": "Whether this parameter is required for tool invocation"
},
"items": {
"type": "object",
"description": "Type of the elements when parameter_type is array"
},
"title": {
"type": "string",
"description": "(Optional) Title of the parameter"
},
"default": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
],
"description": "(Optional) Default value for the parameter if not provided"
}
},
"additionalProperties": false,
"required": [
"name",
"parameter_type",
"description",
"required"
],
"title": "ToolParameter",
"description": "Parameter definition for a tool."
},
"ToolGroup": { "ToolGroup": {
"type": "object", "type": "object",
"properties": { "properties": {

View file

@ -5322,12 +5322,30 @@ components:
type: string type: string
description: >- description: >-
(Optional) Human-readable description of what the tool does (Optional) Human-readable description of what the tool does
parameters: input_schema:
type: array type: object
items: additionalProperties:
$ref: '#/components/schemas/ToolParameter' oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >- description: >-
(Optional) List of parameters this tool accepts (Optional) JSON Schema for tool inputs (MCP inputSchema)
output_schema:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) JSON Schema for tool outputs (MCP outputSchema)
metadata: metadata:
type: object type: object
additionalProperties: additionalProperties:
@ -5346,50 +5364,6 @@ components:
title: ToolDef title: ToolDef
description: >- description: >-
Tool definition used in runtime contexts. Tool definition used in runtime contexts.
ToolParameter:
type: object
properties:
name:
type: string
description: Name of the parameter
parameter_type:
type: string
description: >-
Type of the parameter (e.g., string, integer)
description:
type: string
description: >-
Human-readable description of what the parameter does
required:
type: boolean
default: true
description: >-
Whether this parameter is required for tool invocation
items:
type: object
description: >-
Type of the elements when parameter_type is array
title:
type: string
description: (Optional) Title of the parameter
default:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Default value for the parameter if not provided
additionalProperties: false
required:
- name
- parameter_type
- description
- required
title: ToolParameter
description: Parameter definition for a tool.
TopKSamplingStrategy: TopKSamplingStrategy:
type: object type: object
properties: properties:
@ -9667,6 +9641,50 @@ components:
- parameters - parameters
title: Tool title: Tool
description: A tool that can be invoked by agents. description: A tool that can be invoked by agents.
ToolParameter:
type: object
properties:
name:
type: string
description: Name of the parameter
parameter_type:
type: string
description: >-
Type of the parameter (e.g., string, integer)
description:
type: string
description: >-
Human-readable description of what the parameter does
required:
type: boolean
default: true
description: >-
Whether this parameter is required for tool invocation
items:
type: object
description: >-
Type of the elements when parameter_type is array
title:
type: string
description: (Optional) Title of the parameter
default:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Default value for the parameter if not provided
additionalProperties: false
required:
- name
- parameter_type
- description
- required
title: ToolParameter
description: Parameter definition for a tool.
ToolGroup: ToolGroup:
type: object type: object
properties: properties:

View file

@ -27,14 +27,12 @@ from llama_stack.models.llama.datatypes import (
StopReason, StopReason,
ToolCall, ToolCall,
ToolDefinition, ToolDefinition,
ToolParamDefinition,
ToolPromptFormat, ToolPromptFormat,
) )
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
register_schema(ToolCall) register_schema(ToolCall)
register_schema(ToolParamDefinition)
register_schema(ToolDefinition) register_schema(ToolDefinition)
from enum import StrEnum from enum import StrEnum

View file

@ -65,13 +65,15 @@ class ToolDef(BaseModel):
:param name: Name of the tool :param name: Name of the tool
:param description: (Optional) Human-readable description of what the tool does :param description: (Optional) Human-readable description of what the tool does
:param parameters: (Optional) List of parameters this tool accepts :param input_schema: (Optional) JSON Schema for tool inputs (MCP inputSchema)
:param output_schema: (Optional) JSON Schema for tool outputs (MCP outputSchema)
:param metadata: (Optional) Additional metadata about the tool :param metadata: (Optional) Additional metadata about the tool
""" """
name: str name: str
description: str | None = None description: str | None = None
parameters: list[ToolParameter] | None = None input_schema: dict[str, Any] | None = None
output_schema: dict[str, Any] | None = None
metadata: dict[str, Any] | None = None metadata: dict[str, Any] | None = None

View file

@ -257,7 +257,7 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
return result return result
except Exception as e: except Exception as e:
if logger.isEnabledFor(logging.DEBUG): if logger.isEnabledFor(logging.INFO):
logger.exception(f"Error executing endpoint {route=} {method=}") logger.exception(f"Error executing endpoint {route=} {method=}")
else: else:
logger.error(f"Error executing endpoint {route=} {method=}: {str(e)}") logger.error(f"Error executing endpoint {route=} {method=}: {str(e)}")

View file

@ -88,19 +88,11 @@ class StopReason(Enum):
out_of_tokens = "out_of_tokens" out_of_tokens = "out_of_tokens"
class ToolParamDefinition(BaseModel):
param_type: str
description: str | None = None
required: bool | None = True
items: Any | None = None
title: str | None = None
default: Any | None = None
class ToolDefinition(BaseModel): class ToolDefinition(BaseModel):
tool_name: BuiltinTool | str tool_name: BuiltinTool | str
description: str | None = None description: str | None = None
parameters: dict[str, ToolParamDefinition] | None = None input_schema: dict[str, Any] | None = None
output_schema: dict[str, Any] | None = None
@field_validator("tool_name", mode="before") @field_validator("tool_name", mode="before")
@classmethod @classmethod

View file

@ -18,7 +18,6 @@ from typing import Any
from llama_stack.apis.inference import ( from llama_stack.apis.inference import (
BuiltinTool, BuiltinTool,
ToolDefinition, ToolDefinition,
ToolParamDefinition,
) )
from .base import PromptTemplate, PromptTemplateGeneratorBase from .base import PromptTemplate, PromptTemplateGeneratorBase
@ -101,11 +100,8 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
{# manually setting up JSON because jinja sorts keys in unexpected ways -#} {# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%} {%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%} {%- set tdesc = t.description -%}
{%- set tparams = t.parameters -%} {%- set tprops = t.input_schema.get('properties', {}) -%}
{%- set required_params = [] -%} {%- set required_params = t.input_schema.get('required', []) -%}
{%- for name, param in tparams.items() if param.required == true -%}
{%- set _ = required_params.append(name) -%}
{%- endfor -%}
{ {
"type": "function", "type": "function",
"function": { "function": {
@ -114,11 +110,11 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
"parameters": { "parameters": {
"type": "object", "type": "object",
"properties": [ "properties": [
{%- for name, param in tparams.items() %} {%- for name, param in tprops.items() %}
{ {
"{{name}}": { "{{name}}": {
"type": "object", "type": "object",
"description": "{{param.description}}" "description": "{{param.get('description', '')}}"
} }
}{% if not loop.last %},{% endif %} }{% if not loop.last %},{% endif %}
{%- endfor %} {%- endfor %}
@ -143,17 +139,19 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
ToolDefinition( ToolDefinition(
tool_name="trending_songs", tool_name="trending_songs",
description="Returns the trending songs on a Music site", description="Returns the trending songs on a Music site",
parameters={ input_schema={
"n": ToolParamDefinition( "type": "object",
param_type="int", "properties": {
description="The number of songs to return", "n": {
required=True, "type": "int",
), "description": "The number of songs to return",
"genre": ToolParamDefinition( },
param_type="str", "genre": {
description="The genre of the songs to return", "type": "str",
required=False, "description": "The genre of the songs to return",
), },
},
"required": ["n"],
}, },
), ),
] ]
@ -170,11 +168,14 @@ class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
{#- manually setting up JSON because jinja sorts keys in unexpected ways -#} {#- manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%} {%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%} {%- set tdesc = t.description -%}
{%- set modified_params = t.parameters.copy() -%} {%- set tprops = t.input_schema.get('properties', {}) -%}
{%- for key, value in modified_params.items() -%} {%- set modified_params = {} -%}
{%- if 'default' in value -%} {%- for key, value in tprops.items() -%}
{%- set _ = value.pop('default', None) -%} {%- set param_copy = value.copy() -%}
{%- if 'default' in param_copy -%}
{%- set _ = param_copy.pop('default', None) -%}
{%- endif -%} {%- endif -%}
{%- set _ = modified_params.update({key: param_copy}) -%}
{%- endfor -%} {%- endfor -%}
{%- set tparams = modified_params | tojson -%} {%- set tparams = modified_params | tojson -%}
Use the function '{{ tname }}' to '{{ tdesc }}': Use the function '{{ tname }}' to '{{ tdesc }}':
@ -205,17 +206,19 @@ class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
ToolDefinition( ToolDefinition(
tool_name="trending_songs", tool_name="trending_songs",
description="Returns the trending songs on a Music site", description="Returns the trending songs on a Music site",
parameters={ input_schema={
"n": ToolParamDefinition( "type": "object",
param_type="int", "properties": {
description="The number of songs to return", "n": {
required=True, "type": "int",
), "description": "The number of songs to return",
"genre": ToolParamDefinition( },
param_type="str", "genre": {
description="The genre of the songs to return", "type": "str",
required=False, "description": "The genre of the songs to return",
), },
},
"required": ["n"],
}, },
), ),
] ]
@ -255,11 +258,8 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
{# manually setting up JSON because jinja sorts keys in unexpected ways -#} {# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%} {%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%} {%- set tdesc = t.description -%}
{%- set tparams = t.parameters -%} {%- set tprops = t.input_schema.get('properties', {}) -%}
{%- set required_params = [] -%} {%- set required_params = t.input_schema.get('required', []) -%}
{%- for name, param in tparams.items() if param.required == true -%}
{%- set _ = required_params.append(name) -%}
{%- endfor -%}
{ {
"name": "{{tname}}", "name": "{{tname}}",
"description": "{{tdesc}}", "description": "{{tdesc}}",
@ -267,11 +267,11 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
"type": "dict", "type": "dict",
"required": {{ required_params | tojson }}, "required": {{ required_params | tojson }},
"properties": { "properties": {
{%- for name, param in tparams.items() %} {%- for name, param in tprops.items() %}
"{{name}}": { "{{name}}": {
"type": "{{param.param_type}}", "type": "{{param.get('type', 'string')}}",
"description": "{{param.description}}"{% if param.default %}, "description": "{{param.get('description', '')}}"{% if param.get('default') %},
"default": "{{param.default}}"{% endif %} "default": "{{param.get('default')}}"{% endif %}
}{% if not loop.last %},{% endif %} }{% if not loop.last %},{% endif %}
{%- endfor %} {%- endfor %}
} }
@ -299,18 +299,20 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
ToolDefinition( ToolDefinition(
tool_name="get_weather", tool_name="get_weather",
description="Get weather info for places", description="Get weather info for places",
parameters={ input_schema={
"city": ToolParamDefinition( "type": "object",
param_type="string", "properties": {
description="The name of the city to get the weather for", "city": {
required=True, "type": "string",
), "description": "The name of the city to get the weather for",
"metric": ToolParamDefinition( },
param_type="string", "metric": {
description="The metric for weather. Options are: celsius, fahrenheit", "type": "string",
required=False, "description": "The metric for weather. Options are: celsius, fahrenheit",
default="celsius", "default": "celsius",
), },
},
"required": ["city"],
}, },
), ),
] ]

View file

@ -13,7 +13,7 @@
import textwrap import textwrap
from llama_stack.apis.inference import ToolDefinition, ToolParamDefinition from llama_stack.apis.inference import ToolDefinition
from llama_stack.models.llama.llama3.prompt_templates.base import ( from llama_stack.models.llama.llama3.prompt_templates.base import (
PromptTemplate, PromptTemplate,
PromptTemplateGeneratorBase, PromptTemplateGeneratorBase,
@ -81,11 +81,8 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
{# manually setting up JSON because jinja sorts keys in unexpected ways -#} {# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%} {%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%} {%- set tdesc = t.description -%}
{%- set tparams = t.parameters -%} {%- set tprops = t.input_schema.get('properties', {}) -%}
{%- set required_params = [] -%} {%- set required_params = t.input_schema.get('required', []) -%}
{%- for name, param in tparams.items() if param.required == true -%}
{%- set _ = required_params.append(name) -%}
{%- endfor -%}
{ {
"name": "{{tname}}", "name": "{{tname}}",
"description": "{{tdesc}}", "description": "{{tdesc}}",
@ -93,11 +90,11 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
"type": "dict", "type": "dict",
"required": {{ required_params | tojson }}, "required": {{ required_params | tojson }},
"properties": { "properties": {
{%- for name, param in tparams.items() %} {%- for name, param in tprops.items() %}
"{{name}}": { "{{name}}": {
"type": "{{param.param_type}}", "type": "{{param.get('type', 'string')}}",
"description": "{{param.description}}"{% if param.default %}, "description": "{{param.get('description', '')}}"{% if param.get('default') %},
"default": "{{param.default}}"{% endif %} "default": "{{param.get('default')}}"{% endif %}
}{% if not loop.last %},{% endif %} }{% if not loop.last %},{% endif %}
{%- endfor %} {%- endfor %}
} }
@ -119,18 +116,20 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
ToolDefinition( ToolDefinition(
tool_name="get_weather", tool_name="get_weather",
description="Get weather info for places", description="Get weather info for places",
parameters={ input_schema={
"city": ToolParamDefinition( "type": "object",
param_type="string", "properties": {
description="The name of the city to get the weather for", "city": {
required=True, "type": "string",
), "description": "The name of the city to get the weather for",
"metric": ToolParamDefinition( },
param_type="string", "metric": {
description="The metric for weather. Options are: celsius, fahrenheit", "type": "string",
required=False, "description": "The metric for weather. Options are: celsius, fahrenheit",
default="celsius", "default": "celsius",
), },
},
"required": ["city"],
}, },
), ),
] ]

View file

@ -54,7 +54,6 @@ from llama_stack.apis.inference import (
StopReason, StopReason,
SystemMessage, SystemMessage,
ToolDefinition, ToolDefinition,
ToolParamDefinition,
ToolResponse, ToolResponse,
ToolResponseMessage, ToolResponseMessage,
UserMessage, UserMessage,
@ -790,20 +789,38 @@ class ChatAgent(ShieldRunnerMixin):
for tool_def in self.agent_config.client_tools: for tool_def in self.agent_config.client_tools:
if tool_name_to_def.get(tool_def.name, None): if tool_name_to_def.get(tool_def.name, None):
raise ValueError(f"Tool {tool_def.name} already exists") raise ValueError(f"Tool {tool_def.name} already exists")
# Build JSON Schema from tool parameters
properties = {}
required = []
for param in tool_def.parameters:
param_schema = {
"type": param.parameter_type,
"description": param.description,
}
if param.default is not None:
param_schema["default"] = param.default
if param.items is not None:
param_schema["items"] = param.items
if param.title is not None:
param_schema["title"] = param.title
properties[param.name] = param_schema
if param.required:
required.append(param.name)
input_schema = {
"type": "object",
"properties": properties,
"required": required,
}
tool_name_to_def[tool_def.name] = ToolDefinition( tool_name_to_def[tool_def.name] = ToolDefinition(
tool_name=tool_def.name, tool_name=tool_def.name,
description=tool_def.description, description=tool_def.description,
parameters={ input_schema=input_schema,
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
items=param.items,
title=param.title,
default=param.default,
)
for param in tool_def.parameters
},
) )
for toolgroup_name_with_maybe_tool_name in agent_config_toolgroups: for toolgroup_name_with_maybe_tool_name in agent_config_toolgroups:
toolgroup_name, input_tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name) toolgroup_name, input_tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name)
@ -835,20 +852,37 @@ class ChatAgent(ShieldRunnerMixin):
if tool_name_to_def.get(identifier, None): if tool_name_to_def.get(identifier, None):
raise ValueError(f"Tool {identifier} already exists") raise ValueError(f"Tool {identifier} already exists")
if identifier: if identifier:
# Build JSON Schema from tool parameters
properties = {}
required = []
for param in tool_def.parameters:
param_schema = {
"type": param.parameter_type,
"description": param.description,
}
if param.default is not None:
param_schema["default"] = param.default
if param.items is not None:
param_schema["items"] = param.items
if param.title is not None:
param_schema["title"] = param.title
properties[param.name] = param_schema
if param.required:
required.append(param.name)
input_schema = {
"type": "object",
"properties": properties,
"required": required,
}
tool_name_to_def[tool_def.identifier] = ToolDefinition( tool_name_to_def[tool_def.identifier] = ToolDefinition(
tool_name=identifier, tool_name=identifier,
description=tool_def.description, description=tool_def.description,
parameters={ input_schema=input_schema,
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
items=param.items,
title=param.title,
default=param.default,
)
for param in tool_def.parameters
},
) )
tool_name_to_args[tool_def.identifier] = toolgroup_to_args.get(toolgroup_name, {}) tool_name_to_args[tool_def.identifier] = toolgroup_to_args.get(toolgroup_name, {})

View file

@ -62,22 +62,38 @@ def convert_tooldef_to_chat_tool(tool_def):
ChatCompletionToolParam suitable for OpenAI chat completion ChatCompletionToolParam suitable for OpenAI chat completion
""" """
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition from llama_stack.models.llama.datatypes import ToolDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
# Build JSON Schema from tool parameters
properties = {}
required = []
for param in tool_def.parameters:
param_schema = {
"type": param.parameter_type,
"description": param.description,
}
if param.default is not None:
param_schema["default"] = param.default
if param.items is not None:
param_schema["items"] = param.items
properties[param.name] = param_schema
if param.required:
required.append(param.name)
input_schema = {
"type": "object",
"properties": properties,
"required": required,
}
internal_tool_def = ToolDefinition( internal_tool_def = ToolDefinition(
tool_name=tool_def.name, tool_name=tool_def.name,
description=tool_def.description, description=tool_def.description,
parameters={ input_schema=input_schema,
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
default=param.default,
items=param.items,
)
for param in tool_def.parameters
},
) )
return convert_tooldef_to_openai_tool(internal_tool_def) return convert_tooldef_to_openai_tool(internal_tool_def)
@ -526,22 +542,37 @@ class StreamingResponseOrchestrator:
from openai.types.chat import ChatCompletionToolParam from openai.types.chat import ChatCompletionToolParam
from llama_stack.apis.tools import Tool from llama_stack.apis.tools import Tool
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition from llama_stack.models.llama.datatypes import ToolDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
def make_openai_tool(tool_name: str, tool: Tool) -> ChatCompletionToolParam: def make_openai_tool(tool_name: str, tool: Tool) -> ChatCompletionToolParam:
# Build JSON Schema from tool parameters
properties = {}
required = []
for param in tool.parameters:
param_schema = {
"type": param.parameter_type,
"description": param.description,
}
if param.default is not None:
param_schema["default"] = param.default
properties[param.name] = param_schema
if param.required:
required.append(param.name)
input_schema = {
"type": "object",
"properties": properties,
"required": required,
}
tool_def = ToolDefinition( tool_def = ToolDefinition(
tool_name=tool_name, tool_name=tool_name,
description=tool.description, description=tool.description,
parameters={ input_schema=input_schema,
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
default=param.default,
)
for param in tool.parameters
},
) )
return convert_tooldef_to_openai_tool(tool_def) return convert_tooldef_to_openai_tool(tool_def)

View file

@ -127,7 +127,6 @@ from llama_stack.models.llama.datatypes import (
StopReason, StopReason,
ToolCall, ToolCall,
ToolDefinition, ToolDefinition,
ToolParamDefinition,
) )
from llama_stack.providers.utils.inference.prompt_adapter import ( from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_content_to_url, convert_image_content_to_url,
@ -747,14 +746,8 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
ToolDefinition: ToolDefinition:
tool_name: str | BuiltinTool tool_name: str | BuiltinTool
description: Optional[str] description: Optional[str]
parameters: Optional[Dict[str, ToolParamDefinition]] input_schema: Optional[Dict[str, Any]] # JSON Schema
output_schema: Optional[Dict[str, Any]] # JSON Schema (not used by OpenAI)
ToolParamDefinition:
param_type: str
description: Optional[str]
required: Optional[bool]
default: Optional[Any]
OpenAI spec - OpenAI spec -
@ -763,20 +756,11 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
"function": { "function": {
"name": tool_name, "name": tool_name,
"description": description, "description": description,
"parameters": { "parameters": {<JSON Schema>},
"type": "object",
"properties": {
param_name: {
"type": param_type,
"description": description,
"default": default,
},
...
},
"required": [param_name, ...],
},
}, },
} }
NOTE: OpenAI does not support output_schema, so it is dropped here.
""" """
out = { out = {
"type": "function", "type": "function",
@ -785,37 +769,19 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
function = out["function"] function = out["function"]
if isinstance(tool.tool_name, BuiltinTool): if isinstance(tool.tool_name, BuiltinTool):
function.update(name=tool.tool_name.value) # TODO(mf): is this sufficient? function["name"] = tool.tool_name.value
else: else:
function.update(name=tool.tool_name) function["name"] = tool.tool_name
if tool.description: if tool.description:
function.update(description=tool.description) function["description"] = tool.description
if tool.parameters: if tool.input_schema:
parameters = { # Pass through the entire JSON Schema as-is
"type": "object", function["parameters"] = tool.input_schema
"properties": {},
}
properties = parameters["properties"]
required = []
for param_name, param in tool.parameters.items():
properties[param_name] = to_openai_param_type(param.param_type)
if param.description:
properties[param_name].update(description=param.description)
if param.default:
properties[param_name].update(default=param.default)
if param.items:
properties[param_name].update(items=param.items)
if param.title:
properties[param_name].update(title=param.title)
if param.required:
required.append(param_name)
if required: # NOTE: OpenAI does not support output_schema, so we drop it here
parameters.update(required=required) # It's stored in LlamaStack for validation and other provider usage
function.update(parameters=parameters)
return out return out
@ -876,22 +842,12 @@ def _convert_openai_request_tools(tools: list[dict[str, Any]] | None = None) ->
tool_fn = tool.get("function", {}) tool_fn = tool.get("function", {})
tool_name = tool_fn.get("name", None) tool_name = tool_fn.get("name", None)
tool_desc = tool_fn.get("description", None) tool_desc = tool_fn.get("description", None)
tool_params = tool_fn.get("parameters", None) tool_params = tool_fn.get("parameters", None)
lls_tool_params = {}
if tool_params is not None:
tool_param_properties = tool_params.get("properties", {})
for tool_param_key, tool_param_value in tool_param_properties.items():
tool_param_def = ToolParamDefinition(
param_type=str(tool_param_value.get("type", None)),
description=tool_param_value.get("description", None),
)
lls_tool_params[tool_param_key] = tool_param_def
lls_tool = ToolDefinition( lls_tool = ToolDefinition(
tool_name=tool_name, tool_name=tool_name,
description=tool_desc, description=tool_desc,
parameters=lls_tool_params, input_schema=tool_params, # Pass through entire JSON Schema
) )
lls_tools.append(lls_tool) lls_tools.append(lls_tool)
return lls_tools return lls_tools

View file

@ -20,7 +20,6 @@ from llama_stack.apis.tools import (
ListToolDefsResponse, ListToolDefsResponse,
ToolDef, ToolDef,
ToolInvocationResult, ToolInvocationResult,
ToolParameter,
) )
from llama_stack.core.datatypes import AuthenticationRequiredError from llama_stack.core.datatypes import AuthenticationRequiredError
from llama_stack.log import get_logger from llama_stack.log import get_logger
@ -113,24 +112,12 @@ async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefs
async with client_wrapper(endpoint, headers) as session: async with client_wrapper(endpoint, headers) as session:
tools_result = await session.list_tools() tools_result = await session.list_tools()
for tool in tools_result.tools: for tool in tools_result.tools:
parameters = []
for param_name, param_schema in tool.inputSchema.get("properties", {}).items():
parameters.append(
ToolParameter(
name=param_name,
parameter_type=param_schema.get("type", "string"),
description=param_schema.get("description", ""),
required="default" not in param_schema,
items=param_schema.get("items", None),
title=param_schema.get("title", None),
default=param_schema.get("default", None),
)
)
tools.append( tools.append(
ToolDef( ToolDef(
name=tool.name, name=tool.name,
description=tool.description, description=tool.description,
parameters=parameters, input_schema=tool.inputSchema,
output_schema=getattr(tool, "outputSchema", None),
metadata={ metadata={
"endpoint": endpoint, "endpoint": endpoint,
}, },

View file

@ -0,0 +1,369 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Integration tests for inference/chat completion with JSON Schema-based tools.
Tests that tools pass through correctly to various LLM providers.
"""
import json
import pytest
from llama_stack import LlamaStackAsLibraryClient
from llama_stack.models.llama.datatypes import ToolDefinition
from tests.common.mcp import make_mcp_server
AUTH_TOKEN = "test-token"
class TestChatCompletionWithTools:
"""Test chat completion with tools that have complex schemas."""
def test_simple_tool_call(self, llama_stack_client, text_model_id):
"""Test basic tool calling with simple input schema."""
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather for a location",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string", "description": "City name"}},
"required": ["location"],
},
},
}
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "What's the weather in San Francisco?"}],
tools=tools,
)
assert response is not None
def test_tool_with_complex_schema(self, llama_stack_client, text_model_id):
"""Test tool calling with complex schema including $ref and $defs."""
tools = [
{
"type": "function",
"function": {
"name": "book_flight",
"description": "Book a flight",
"parameters": {
"type": "object",
"properties": {
"flight": {"$ref": "#/$defs/FlightInfo"},
"passenger": {"$ref": "#/$defs/Passenger"},
},
"required": ["flight", "passenger"],
"$defs": {
"FlightInfo": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"date": {"type": "string", "format": "date"},
},
},
"Passenger": {
"type": "object",
"properties": {"name": {"type": "string"}, "age": {"type": "integer"}},
},
},
},
},
}
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Book a flight from SFO to JFK for John Doe"}],
tools=tools,
)
# The key test: No errors during schema processing
# The LLM received a valid, complete schema with $ref/$defs
assert response is not None
class TestOpenAICompatibility:
"""Test OpenAI-compatible endpoints with new schema format."""
def test_openai_chat_completion_with_tools(self, compat_client, text_model_id):
"""Test OpenAI-compatible chat completion with tools."""
from openai import OpenAI
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client required")
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather information",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string", "description": "City name"}},
"required": ["location"],
},
},
}
]
response = compat_client.chat.completions.create(
model=text_model_id, messages=[{"role": "user", "content": "What's the weather in Tokyo?"}], tools=tools
)
assert response is not None
assert response.choices is not None
def test_openai_format_preserves_complex_schemas(self, compat_client, text_model_id):
"""Test that complex schemas work through OpenAI-compatible API."""
from openai import OpenAI
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client required")
tools = [
{
"type": "function",
"function": {
"name": "process_data",
"description": "Process structured data",
"parameters": {
"type": "object",
"properties": {"data": {"$ref": "#/$defs/DataObject"}},
"$defs": {
"DataObject": {
"type": "object",
"properties": {"values": {"type": "array", "items": {"type": "number"}}},
}
},
},
},
}
]
response = compat_client.chat.completions.create(
model=text_model_id, messages=[{"role": "user", "content": "Process this data"}], tools=tools
)
assert response is not None
class TestMCPToolsInChatCompletion:
"""Test using MCP tools in chat completion."""
@pytest.fixture
def mcp_with_schemas(self):
"""MCP server for chat completion tests."""
from mcp.server.fastmcp import Context
async def calculate(x: float, y: float, operation: str, ctx: Context) -> float:
ops = {"add": x + y, "sub": x - y, "mul": x * y, "div": x / y if y != 0 else None}
return ops.get(operation, 0)
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools={"calculate": calculate}) as server:
yield server
def test_mcp_tools_in_inference(self, llama_stack_client, text_model_id, mcp_with_schemas):
"""Test that MCP tools can be used in inference."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::calc"
uri = mcp_with_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Get the tools from MCP
tools_response = llama_stack_client.tool_runtime.list_runtime_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
)
# Convert to OpenAI format for inference
tools = []
for tool in tools_response.data:
tools.append(
{
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.input_schema if hasattr(tool, "input_schema") else {},
},
}
)
# Use in chat completion
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Calculate 5 + 3"}],
tools=tools,
)
# Schema should have been passed through correctly
assert response is not None
class TestProviderSpecificBehavior:
"""Test provider-specific handling of schemas."""
def test_openai_provider_drops_output_schema(self, llama_stack_client, text_model_id):
"""Test that OpenAI provider doesn't send output_schema (API limitation)."""
# This is more of a documentation test
# OpenAI API doesn't support output schemas, so we drop them
_tool = ToolDefinition(
tool_name="test",
input_schema={"type": "object", "properties": {"x": {"type": "string"}}},
output_schema={"type": "object", "properties": {"y": {"type": "number"}}},
)
# When this tool is sent to OpenAI provider, output_schema is dropped
# But input_schema is preserved
# This test documents the expected behavior
# We can't easily test this without mocking, but the unit tests cover it
pass
def test_gemini_array_support(self):
"""Test that Gemini receives array schemas correctly (issue from commit 65f7b81e)."""
# This was the original bug that led to adding 'items' field
# Now with full JSON Schema pass-through, arrays should work
tool = ToolDefinition(
tool_name="tag_processor",
input_schema={
"type": "object",
"properties": {"tags": {"type": "array", "items": {"type": "string"}, "description": "List of tags"}},
},
)
# With new approach, the complete schema with items is preserved
assert tool.input_schema["properties"]["tags"]["type"] == "array"
assert tool.input_schema["properties"]["tags"]["items"]["type"] == "string"
class TestStreamingWithTools:
"""Test streaming chat completion with tools."""
def test_streaming_tool_calls(self, llama_stack_client, text_model_id):
"""Test that tool schemas work correctly in streaming mode."""
tools = [
{
"type": "function",
"function": {
"name": "get_time",
"description": "Get current time",
"parameters": {"type": "object", "properties": {"timezone": {"type": "string"}}},
},
}
]
response_stream = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "What time is it in UTC?"}],
tools=tools,
stream=True,
)
# Should be able to iterate through stream
chunks = []
for chunk in response_stream:
chunks.append(chunk)
# Should have received some chunks
assert len(chunks) >= 0
class TestEdgeCases:
"""Test edge cases in inference with tools."""
def test_tool_without_schema(self, llama_stack_client, text_model_id):
"""Test tool with no input_schema."""
tools = [
{
"type": "function",
"function": {
"name": "no_args_tool",
"description": "Tool with no arguments",
"parameters": {"type": "object", "properties": {}},
},
}
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Call the no args tool"}],
tools=tools,
)
assert response is not None
def test_multiple_tools_with_different_schemas(self, llama_stack_client, text_model_id):
"""Test multiple tools with different schema complexities."""
tools = [
{
"type": "function",
"function": {
"name": "simple",
"parameters": {"type": "object", "properties": {"x": {"type": "string"}}},
},
},
{
"type": "function",
"function": {
"name": "complex",
"parameters": {
"type": "object",
"properties": {"data": {"$ref": "#/$defs/Complex"}},
"$defs": {
"Complex": {
"type": "object",
"properties": {"nested": {"type": "array", "items": {"type": "number"}}},
}
},
},
},
},
{
"type": "function",
"function": {
"name": "with_output",
"parameters": {"type": "object", "properties": {"input": {"type": "string"}}},
},
},
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Use one of the available tools"}],
tools=tools,
)
# All tools should have been processed without errors
assert response is not None

View file

@ -0,0 +1,478 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Integration tests for MCP tools with complex JSON Schema support.
Tests $ref, $defs, and other JSON Schema features through MCP integration.
"""
import json
import pytest
from llama_stack import LlamaStackAsLibraryClient
from tests.common.mcp import make_mcp_server
AUTH_TOKEN = "test-token"
@pytest.fixture(scope="function")
def mcp_server_with_complex_schemas():
"""MCP server with tools that have complex schemas including $ref and $defs."""
from mcp.server.fastmcp import Context
async def book_flight(flight: dict, passengers: list[dict], payment: dict, ctx: Context) -> dict:
"""
Book a flight with passenger and payment information.
This tool uses JSON Schema $ref and $defs for type reuse.
"""
return {
"booking_id": "BK12345",
"flight": flight,
"passengers": passengers,
"payment": payment,
"status": "confirmed",
}
async def process_order(order_data: dict, ctx: Context) -> dict:
"""
Process an order with nested address information.
Uses nested objects and $ref.
"""
return {"order_id": "ORD789", "status": "processing", "data": order_data}
async def flexible_contact(contact_info: str, ctx: Context) -> dict:
"""
Accept flexible contact (email or phone).
Uses anyOf schema.
"""
if "@" in contact_info:
return {"type": "email", "value": contact_info}
else:
return {"type": "phone", "value": contact_info}
# Manually attach complex schemas to the functions
# (FastMCP might not support this by default, so this is test setup)
# For MCP, we need to set the schema via tool annotations
# This is test infrastructure to force specific schemas
tools = {"book_flight": book_flight, "process_order": process_order, "flexible_contact": flexible_contact}
# Note: In real MCP implementation, we'd configure these schemas properly
# For testing, we may need to mock or extend the MCP server setup
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools=tools) as server_info:
yield server_info
@pytest.fixture(scope="function")
def mcp_server_with_output_schemas():
"""MCP server with tools that have output schemas defined."""
from mcp.server.fastmcp import Context
async def get_weather(location: str, ctx: Context) -> dict:
"""
Get weather with structured output.
Has both input and output schemas.
"""
return {"temperature": 72.5, "conditions": "Sunny", "humidity": 45, "wind_speed": 10.2}
async def calculate(x: float, y: float, operation: str, ctx: Context) -> dict:
"""
Perform calculation with validated output.
"""
operations = {"add": x + y, "subtract": x - y, "multiply": x * y, "divide": x / y if y != 0 else None}
result = operations.get(operation)
return {"result": result, "operation": operation}
tools = {"get_weather": get_weather, "calculate": calculate}
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools=tools) as server_info:
yield server_info
class TestMCPSchemaPreservation:
"""Test that MCP tool schemas are preserved correctly."""
def test_mcp_tools_list_with_schemas(self, llama_stack_client, mcp_server_with_complex_schemas):
"""Test listing MCP tools preserves input_schema."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::complex"
uri = mcp_server_with_complex_schemas["server_url"]
# Clean up any existing registration
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
# Register MCP toolgroup
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# List runtime tools
response = llama_stack_client.tool_runtime.list_runtime_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
)
tools = response.data
assert len(tools) > 0
# Check each tool has input_schema
for tool in tools:
assert hasattr(tool, "input_schema")
# Schema might be None or a dict depending on tool
if tool.input_schema is not None:
assert isinstance(tool.input_schema, dict)
# Should have basic JSON Schema structure
if "properties" in tool.input_schema:
assert "type" in tool.input_schema
def test_mcp_schema_with_refs_preserved(self, llama_stack_client, mcp_server_with_complex_schemas):
"""Test that $ref and $defs in MCP schemas are preserved."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::complex"
uri = mcp_server_with_complex_schemas["server_url"]
# Register
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# List tools
response = llama_stack_client.tool_runtime.list_runtime_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
)
# Find book_flight tool (which should have $ref/$defs)
book_flight_tool = next((t for t in response.data if t.name == "book_flight"), None)
if book_flight_tool and book_flight_tool.input_schema:
# If the MCP server provides $defs, they should be preserved
# This is the KEY test for the bug fix
schema = book_flight_tool.input_schema
# Check if schema has properties (might vary based on MCP implementation)
if "properties" in schema:
# Verify schema structure is preserved (exact structure depends on MCP server)
assert isinstance(schema["properties"], dict)
# If $defs are present, verify they're preserved
if "$defs" in schema:
assert isinstance(schema["$defs"], dict)
# Each definition should be a dict
for _def_name, def_schema in schema["$defs"].items():
assert isinstance(def_schema, dict)
def test_mcp_output_schema_preserved(self, llama_stack_client, mcp_server_with_output_schemas):
"""Test that MCP outputSchema is preserved."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::with_output"
uri = mcp_server_with_output_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
response = llama_stack_client.tool_runtime.list_runtime_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
)
# Find get_weather tool
weather_tool = next((t for t in response.data if t.name == "get_weather"), None)
if weather_tool:
# Check if output_schema field exists and is preserved
assert hasattr(weather_tool, "output_schema")
# If MCP server provides output schema, it should be preserved
if weather_tool.output_schema is not None:
assert isinstance(weather_tool.output_schema, dict)
# Should have JSON Schema structure
if "properties" in weather_tool.output_schema:
assert "type" in weather_tool.output_schema
class TestMCPToolInvocation:
"""Test invoking MCP tools with complex schemas."""
def test_invoke_mcp_tool_with_nested_data(self, llama_stack_client, mcp_server_with_complex_schemas):
"""Test invoking MCP tool that expects nested object structure."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::complex"
uri = mcp_server_with_complex_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Invoke tool with complex nested data
result = llama_stack_client.tool_runtime.invoke_tool(
tool_name="process_order",
kwargs={
"order_data": {
"items": [{"name": "Widget", "quantity": 2}, {"name": "Gadget", "quantity": 1}],
"shipping": {"address": {"street": "123 Main St", "city": "San Francisco", "zipcode": "94102"}},
}
},
extra_headers=auth_headers,
)
# Should succeed without schema validation errors
assert result.content is not None
assert result.error_message is None
def test_invoke_with_flexible_schema(self, llama_stack_client, mcp_server_with_complex_schemas):
"""Test invoking tool with anyOf schema (flexible input)."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::complex"
uri = mcp_server_with_complex_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Test with email format
result_email = llama_stack_client.tool_runtime.invoke_tool(
tool_name="flexible_contact",
kwargs={"contact_info": "user@example.com"},
extra_headers=auth_headers,
)
assert result_email.error_message is None
# Test with phone format
result_phone = llama_stack_client.tool_runtime.invoke_tool(
tool_name="flexible_contact",
kwargs={"contact_info": "+15551234567"},
extra_headers=auth_headers,
)
assert result_phone.error_message is None
class TestAgentWithMCPTools:
"""Test agents using MCP tools with complex schemas."""
def test_agent_with_complex_mcp_tool(self, llama_stack_client, text_model_id, mcp_server_with_complex_schemas):
"""Test agent can use MCP tools with $ref/$defs schemas."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
from llama_stack_client import Agent
test_toolgroup_id = "mcp::complex"
uri = mcp_server_with_complex_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Create agent with MCP tools
agent = Agent(
client=llama_stack_client,
model=text_model_id,
instructions="You are a helpful assistant that can process orders and book flights.",
tools=[test_toolgroup_id],
)
session_id = agent.create_session("test-session-complex")
# Ask agent to use a tool with complex schema
response = agent.create_turn(
session_id=session_id,
messages=[
{"role": "user", "content": "Process an order with 2 widgets going to 123 Main St, San Francisco"}
],
stream=False,
extra_headers=auth_headers,
)
steps = response.steps
# Verify agent was able to call the tool
# (The LLM should have been able to understand the schema and formulate a valid call)
tool_execution_steps = [s for s in steps if s.step_type == "tool_execution"]
# Agent might or might not call the tool depending on the model
# But if it does, there should be no errors
for step in tool_execution_steps:
if step.tool_responses:
for tool_response in step.tool_responses:
assert tool_response.content is not None
class TestSchemaValidation:
"""Test schema validation (future feature)."""
def test_invalid_input_rejected(self, llama_stack_client, mcp_server_with_complex_schemas):
"""Test that invalid input is rejected (if validation is implemented)."""
# This test documents expected behavior once we add input validation
# For now, it may pass invalid data through
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::complex"
uri = mcp_server_with_complex_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Try to invoke with completely wrong data type
# Once validation is added, this should raise an error
try:
llama_stack_client.tool_runtime.invoke_tool(
tool_name="process_order",
kwargs={"order_data": "this should be an object not a string"},
extra_headers=auth_headers,
)
# For now, this might succeed (no validation)
# After adding validation, we'd expect a ValidationError
except Exception:
# Expected once validation is implemented
pass
class TestOutputValidation:
"""Test output schema validation (future feature)."""
def test_output_matches_schema(self, llama_stack_client, mcp_server_with_output_schemas):
"""Test that tool output is validated against output_schema (if implemented)."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::with_output"
uri = mcp_server_with_output_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Invoke tool
result = llama_stack_client.tool_runtime.invoke_tool(
tool_name="get_weather",
kwargs={"location": "San Francisco"},
extra_headers=auth_headers,
)
# Tool should return valid output
assert result.error_message is None
assert result.content is not None
# Once output validation is implemented, the system would check
# that result.content matches the tool's output_schema

View file

@ -18,7 +18,6 @@ from llama_stack.apis.inference import (
from llama_stack.models.llama.datatypes import ( from llama_stack.models.llama.datatypes import (
BuiltinTool, BuiltinTool,
ToolDefinition, ToolDefinition,
ToolParamDefinition,
ToolPromptFormat, ToolPromptFormat,
) )
from llama_stack.providers.utils.inference.prompt_adapter import ( from llama_stack.providers.utils.inference.prompt_adapter import (
@ -75,12 +74,15 @@ async def test_system_custom_only():
ToolDefinition( ToolDefinition(
tool_name="custom1", tool_name="custom1",
description="custom1 tool", description="custom1 tool",
parameters={ input_schema={
"param1": ToolParamDefinition( "type": "object",
param_type="str", "properties": {
description="param1 description", "param1": {
required=True, "type": "str",
), "description": "param1 description",
},
},
"required": ["param1"],
}, },
) )
], ],
@ -107,12 +109,15 @@ async def test_system_custom_and_builtin():
ToolDefinition( ToolDefinition(
tool_name="custom1", tool_name="custom1",
description="custom1 tool", description="custom1 tool",
parameters={ input_schema={
"param1": ToolParamDefinition( "type": "object",
param_type="str", "properties": {
description="param1 description", "param1": {
required=True, "type": "str",
), "description": "param1 description",
},
},
"required": ["param1"],
}, },
), ),
], ],
@ -148,12 +153,15 @@ async def test_completion_message_encoding():
ToolDefinition( ToolDefinition(
tool_name="custom1", tool_name="custom1",
description="custom1 tool", description="custom1 tool",
parameters={ input_schema={
"param1": ToolParamDefinition( "type": "object",
param_type="str", "properties": {
description="param1 description", "param1": {
required=True, "type": "str",
), "description": "param1 description",
},
},
"required": ["param1"],
}, },
), ),
], ],
@ -227,12 +235,15 @@ async def test_replace_system_message_behavior_custom_tools():
ToolDefinition( ToolDefinition(
tool_name="custom1", tool_name="custom1",
description="custom1 tool", description="custom1 tool",
parameters={ input_schema={
"param1": ToolParamDefinition( "type": "object",
param_type="str", "properties": {
description="param1 description", "param1": {
required=True, "type": "str",
), "description": "param1 description",
},
},
"required": ["param1"],
}, },
), ),
], ],
@ -264,12 +275,15 @@ async def test_replace_system_message_behavior_custom_tools_with_template():
ToolDefinition( ToolDefinition(
tool_name="custom1", tool_name="custom1",
description="custom1 tool", description="custom1 tool",
parameters={ input_schema={
"param1": ToolParamDefinition( "type": "object",
param_type="str", "properties": {
description="param1 description", "param1": {
required=True, "type": "str",
), "description": "param1 description",
},
},
"required": ["param1"],
}, },
), ),
], ],

View file

@ -0,0 +1,381 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Unit tests for OpenAI compatibility tool conversion.
Tests convert_tooldef_to_openai_tool with new JSON Schema approach.
"""
from llama_stack.models.llama.datatypes import BuiltinTool, ToolDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
class TestSimpleSchemaConversion:
"""Test basic schema conversions to OpenAI format."""
def test_simple_tool_conversion(self):
"""Test conversion of simple tool with basic input schema."""
tool = ToolDefinition(
tool_name="get_weather",
description="Get weather information",
input_schema={
"type": "object",
"properties": {"location": {"type": "string", "description": "City name"}},
"required": ["location"],
},
)
result = convert_tooldef_to_openai_tool(tool)
# Check OpenAI structure
assert result["type"] == "function"
assert "function" in result
function = result["function"]
assert function["name"] == "get_weather"
assert function["description"] == "Get weather information"
# Check parameters are passed through
assert "parameters" in function
assert function["parameters"] == tool.input_schema
assert function["parameters"]["type"] == "object"
assert "location" in function["parameters"]["properties"]
def test_tool_without_description(self):
"""Test tool conversion without description."""
tool = ToolDefinition(tool_name="test_tool", input_schema={"type": "object", "properties": {}})
result = convert_tooldef_to_openai_tool(tool)
assert result["function"]["name"] == "test_tool"
assert "description" not in result["function"]
assert "parameters" in result["function"]
def test_builtin_tool_conversion(self):
"""Test conversion of BuiltinTool enum."""
tool = ToolDefinition(
tool_name=BuiltinTool.code_interpreter,
description="Run Python code",
input_schema={"type": "object", "properties": {"code": {"type": "string"}}},
)
result = convert_tooldef_to_openai_tool(tool)
# BuiltinTool should be converted to its value
assert result["function"]["name"] == "code_interpreter"
class TestComplexSchemaConversion:
"""Test conversion of complex JSON Schema features."""
def test_schema_with_refs_and_defs(self):
"""Test that $ref and $defs are passed through to OpenAI."""
tool = ToolDefinition(
tool_name="book_flight",
description="Book a flight",
input_schema={
"type": "object",
"properties": {
"flight": {"$ref": "#/$defs/FlightInfo"},
"passengers": {"type": "array", "items": {"$ref": "#/$defs/Passenger"}},
"payment": {"$ref": "#/$defs/Payment"},
},
"required": ["flight", "passengers", "payment"],
"$defs": {
"FlightInfo": {
"type": "object",
"properties": {
"from": {"type": "string", "description": "Departure airport"},
"to": {"type": "string", "description": "Arrival airport"},
"date": {"type": "string", "format": "date"},
},
"required": ["from", "to", "date"],
},
"Passenger": {
"type": "object",
"properties": {"name": {"type": "string"}, "age": {"type": "integer", "minimum": 0}},
"required": ["name", "age"],
},
"Payment": {
"type": "object",
"properties": {
"method": {"type": "string", "enum": ["credit_card", "debit_card"]},
"amount": {"type": "number", "minimum": 0},
},
},
},
},
)
result = convert_tooldef_to_openai_tool(tool)
params = result["function"]["parameters"]
# Verify $defs are preserved
assert "$defs" in params
assert "FlightInfo" in params["$defs"]
assert "Passenger" in params["$defs"]
assert "Payment" in params["$defs"]
# Verify $ref are preserved
assert params["properties"]["flight"]["$ref"] == "#/$defs/FlightInfo"
assert params["properties"]["passengers"]["items"]["$ref"] == "#/$defs/Passenger"
assert params["properties"]["payment"]["$ref"] == "#/$defs/Payment"
# Verify nested schema details are preserved
assert params["$defs"]["FlightInfo"]["properties"]["date"]["format"] == "date"
assert params["$defs"]["Passenger"]["properties"]["age"]["minimum"] == 0
assert params["$defs"]["Payment"]["properties"]["method"]["enum"] == ["credit_card", "debit_card"]
def test_anyof_schema_conversion(self):
"""Test conversion of anyOf schemas."""
tool = ToolDefinition(
tool_name="flexible_input",
input_schema={
"type": "object",
"properties": {
"contact": {
"anyOf": [
{"type": "string", "format": "email"},
{"type": "string", "pattern": "^\\+?[0-9]{10,15}$"},
],
"description": "Email or phone number",
}
},
},
)
result = convert_tooldef_to_openai_tool(tool)
contact_schema = result["function"]["parameters"]["properties"]["contact"]
assert "anyOf" in contact_schema
assert len(contact_schema["anyOf"]) == 2
assert contact_schema["anyOf"][0]["format"] == "email"
assert "pattern" in contact_schema["anyOf"][1]
def test_nested_objects_conversion(self):
"""Test conversion of deeply nested objects."""
tool = ToolDefinition(
tool_name="nested_data",
input_schema={
"type": "object",
"properties": {
"user": {
"type": "object",
"properties": {
"profile": {
"type": "object",
"properties": {
"name": {"type": "string"},
"settings": {
"type": "object",
"properties": {"theme": {"type": "string", "enum": ["light", "dark"]}},
},
},
}
},
}
},
},
)
result = convert_tooldef_to_openai_tool(tool)
# Navigate deep structure
user_schema = result["function"]["parameters"]["properties"]["user"]
profile_schema = user_schema["properties"]["profile"]
settings_schema = profile_schema["properties"]["settings"]
theme_schema = settings_schema["properties"]["theme"]
assert theme_schema["enum"] == ["light", "dark"]
def test_array_schemas_with_constraints(self):
"""Test conversion of array schemas with constraints."""
tool = ToolDefinition(
tool_name="list_processor",
input_schema={
"type": "object",
"properties": {
"items": {
"type": "array",
"items": {
"type": "object",
"properties": {"id": {"type": "integer"}, "name": {"type": "string"}},
"required": ["id"],
},
"minItems": 1,
"maxItems": 100,
"uniqueItems": True,
}
},
},
)
result = convert_tooldef_to_openai_tool(tool)
items_schema = result["function"]["parameters"]["properties"]["items"]
assert items_schema["type"] == "array"
assert items_schema["minItems"] == 1
assert items_schema["maxItems"] == 100
assert items_schema["uniqueItems"] is True
assert items_schema["items"]["type"] == "object"
class TestOutputSchemaHandling:
"""Test that output_schema is correctly handled (or dropped) for OpenAI."""
def test_output_schema_is_dropped(self):
"""Test that output_schema is NOT included in OpenAI format (API limitation)."""
tool = ToolDefinition(
tool_name="calculator",
description="Perform calculation",
input_schema={"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}},
output_schema={"type": "object", "properties": {"result": {"type": "number"}}, "required": ["result"]},
)
result = convert_tooldef_to_openai_tool(tool)
# OpenAI doesn't support output schema
assert "outputSchema" not in result["function"]
assert "responseSchema" not in result["function"]
assert "output_schema" not in result["function"]
# But input schema should be present
assert "parameters" in result["function"]
assert result["function"]["parameters"] == tool.input_schema
def test_only_output_schema_no_input(self):
"""Test tool with only output_schema (unusual but valid)."""
tool = ToolDefinition(
tool_name="no_input_tool",
description="Tool with no inputs",
output_schema={"type": "object", "properties": {"timestamp": {"type": "string"}}},
)
result = convert_tooldef_to_openai_tool(tool)
# No parameters should be set if input_schema is None
# (or we might set an empty object schema - implementation detail)
assert "outputSchema" not in result["function"]
class TestEdgeCases:
"""Test edge cases and error conditions."""
def test_tool_with_no_schemas(self):
"""Test tool with neither input nor output schema."""
tool = ToolDefinition(tool_name="schemaless_tool", description="Tool without schemas")
result = convert_tooldef_to_openai_tool(tool)
assert result["function"]["name"] == "schemaless_tool"
assert result["function"]["description"] == "Tool without schemas"
# Implementation detail: might have no parameters or empty object
def test_empty_input_schema(self):
"""Test tool with empty object schema."""
tool = ToolDefinition(tool_name="no_params", input_schema={"type": "object", "properties": {}})
result = convert_tooldef_to_openai_tool(tool)
assert result["function"]["parameters"]["type"] == "object"
assert result["function"]["parameters"]["properties"] == {}
def test_schema_with_additional_properties(self):
"""Test that additionalProperties is preserved."""
tool = ToolDefinition(
tool_name="flexible_tool",
input_schema={
"type": "object",
"properties": {"known_field": {"type": "string"}},
"additionalProperties": True,
},
)
result = convert_tooldef_to_openai_tool(tool)
assert result["function"]["parameters"]["additionalProperties"] is True
def test_schema_with_pattern_properties(self):
"""Test that patternProperties is preserved."""
tool = ToolDefinition(
tool_name="pattern_tool",
input_schema={"type": "object", "patternProperties": {"^[a-z]+$": {"type": "string"}}},
)
result = convert_tooldef_to_openai_tool(tool)
assert "patternProperties" in result["function"]["parameters"]
def test_schema_identity(self):
"""Test that converted schema is identical to input (no lossy conversion)."""
original_schema = {
"type": "object",
"properties": {"complex": {"$ref": "#/$defs/Complex"}},
"$defs": {
"Complex": {
"type": "object",
"properties": {"nested": {"anyOf": [{"type": "string"}, {"type": "number"}]}},
}
},
"required": ["complex"],
"additionalProperties": False,
}
tool = ToolDefinition(tool_name="test", input_schema=original_schema)
result = convert_tooldef_to_openai_tool(tool)
# Converted parameters should be EXACTLY the same as input
assert result["function"]["parameters"] == original_schema
class TestConversionConsistency:
"""Test consistency across multiple conversions."""
def test_multiple_tools_with_shared_defs(self):
"""Test converting multiple tools that could share definitions."""
tool1 = ToolDefinition(
tool_name="tool1",
input_schema={
"type": "object",
"properties": {"data": {"$ref": "#/$defs/Data"}},
"$defs": {"Data": {"type": "object", "properties": {"x": {"type": "number"}}}},
},
)
tool2 = ToolDefinition(
tool_name="tool2",
input_schema={
"type": "object",
"properties": {"info": {"$ref": "#/$defs/Data"}},
"$defs": {"Data": {"type": "object", "properties": {"y": {"type": "string"}}}},
},
)
result1 = convert_tooldef_to_openai_tool(tool1)
result2 = convert_tooldef_to_openai_tool(tool2)
# Each tool maintains its own $defs independently
assert result1["function"]["parameters"]["$defs"]["Data"]["properties"]["x"]["type"] == "number"
assert result2["function"]["parameters"]["$defs"]["Data"]["properties"]["y"]["type"] == "string"
def test_conversion_is_pure(self):
"""Test that conversion doesn't modify the original tool."""
original_schema = {
"type": "object",
"properties": {"x": {"type": "string"}},
"$defs": {"T": {"type": "number"}},
}
tool = ToolDefinition(tool_name="test", input_schema=original_schema.copy())
# Convert
convert_tooldef_to_openai_tool(tool)
# Original tool should be unchanged
assert tool.input_schema == original_schema
assert "$defs" in tool.input_schema

View file

@ -0,0 +1,297 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Unit tests for JSON Schema-based tool definitions.
Tests the new input_schema and output_schema fields.
"""
from pydantic import ValidationError
from llama_stack.apis.tools import ToolDef
from llama_stack.models.llama.datatypes import BuiltinTool, ToolDefinition
class TestToolDefValidation:
"""Test ToolDef validation with JSON Schema."""
def test_simple_input_schema(self):
"""Test ToolDef with simple input schema."""
tool = ToolDef(
name="get_weather",
description="Get weather information",
input_schema={
"type": "object",
"properties": {"location": {"type": "string", "description": "City name"}},
"required": ["location"],
},
)
assert tool.name == "get_weather"
assert tool.input_schema["type"] == "object"
assert "location" in tool.input_schema["properties"]
assert tool.output_schema is None
def test_input_and_output_schema(self):
"""Test ToolDef with both input and output schemas."""
tool = ToolDef(
name="calculate",
description="Perform calculation",
input_schema={
"type": "object",
"properties": {"x": {"type": "number"}, "y": {"type": "number"}},
"required": ["x", "y"],
},
output_schema={"type": "object", "properties": {"result": {"type": "number"}}, "required": ["result"]},
)
assert tool.input_schema is not None
assert tool.output_schema is not None
assert "result" in tool.output_schema["properties"]
def test_schema_with_refs_and_defs(self):
"""Test that $ref and $defs are preserved in schemas."""
tool = ToolDef(
name="book_flight",
description="Book a flight",
input_schema={
"type": "object",
"properties": {
"flight": {"$ref": "#/$defs/FlightInfo"},
"passengers": {"type": "array", "items": {"$ref": "#/$defs/Passenger"}},
},
"$defs": {
"FlightInfo": {
"type": "object",
"properties": {"from": {"type": "string"}, "to": {"type": "string"}},
},
"Passenger": {
"type": "object",
"properties": {"name": {"type": "string"}, "age": {"type": "integer"}},
},
},
},
)
# Verify $defs are preserved
assert "$defs" in tool.input_schema
assert "FlightInfo" in tool.input_schema["$defs"]
assert "Passenger" in tool.input_schema["$defs"]
# Verify $ref are preserved
assert tool.input_schema["properties"]["flight"]["$ref"] == "#/$defs/FlightInfo"
assert tool.input_schema["properties"]["passengers"]["items"]["$ref"] == "#/$defs/Passenger"
def test_output_schema_with_refs(self):
"""Test that output_schema also supports $ref and $defs."""
tool = ToolDef(
name="search",
description="Search for items",
input_schema={"type": "object", "properties": {"query": {"type": "string"}}},
output_schema={
"type": "object",
"properties": {"results": {"type": "array", "items": {"$ref": "#/$defs/SearchResult"}}},
"$defs": {
"SearchResult": {
"type": "object",
"properties": {"title": {"type": "string"}, "score": {"type": "number"}},
}
},
},
)
assert "$defs" in tool.output_schema
assert "SearchResult" in tool.output_schema["$defs"]
def test_complex_json_schema_features(self):
"""Test various JSON Schema features are preserved."""
tool = ToolDef(
name="complex_tool",
description="Tool with complex schema",
input_schema={
"type": "object",
"properties": {
# anyOf
"contact": {
"anyOf": [
{"type": "string", "format": "email"},
{"type": "string", "pattern": "^\\+?[0-9]{10,15}$"},
]
},
# enum
"status": {"type": "string", "enum": ["pending", "approved", "rejected"]},
# nested objects
"address": {
"type": "object",
"properties": {
"street": {"type": "string"},
"city": {"type": "string"},
"zipcode": {"type": "string", "pattern": "^[0-9]{5}$"},
},
"required": ["street", "city"],
},
# array with constraints
"tags": {
"type": "array",
"items": {"type": "string"},
"minItems": 1,
"maxItems": 10,
"uniqueItems": True,
},
},
},
)
# Verify anyOf
assert "anyOf" in tool.input_schema["properties"]["contact"]
# Verify enum
assert tool.input_schema["properties"]["status"]["enum"] == ["pending", "approved", "rejected"]
# Verify nested object
assert tool.input_schema["properties"]["address"]["type"] == "object"
assert "zipcode" in tool.input_schema["properties"]["address"]["properties"]
# Verify array constraints
tags_schema = tool.input_schema["properties"]["tags"]
assert tags_schema["minItems"] == 1
assert tags_schema["maxItems"] == 10
assert tags_schema["uniqueItems"] is True
def test_invalid_json_schema_raises_error(self):
"""Test that invalid JSON Schema raises validation error."""
# TODO: This test will pass once we add schema validation
# For now, Pydantic accepts any dict, so this is a placeholder
# This should eventually raise an error due to invalid schema
try:
ToolDef(
name="bad_tool",
input_schema={
"type": "invalid_type", # Not a valid JSON Schema type
"properties": "not_an_object", # Should be an object
},
)
# For now this passes, but shouldn't after we add validation
except ValidationError:
pass # Expected once validation is added
class TestToolDefinitionValidation:
"""Test ToolDefinition (internal) validation with JSON Schema."""
def test_simple_tool_definition(self):
"""Test ToolDefinition with simple schema."""
tool = ToolDefinition(
tool_name="get_time",
description="Get current time",
input_schema={"type": "object", "properties": {"timezone": {"type": "string"}}},
)
assert tool.tool_name == "get_time"
assert tool.input_schema is not None
def test_builtin_tool_with_schema(self):
"""Test ToolDefinition with BuiltinTool enum."""
tool = ToolDefinition(
tool_name=BuiltinTool.code_interpreter,
description="Run Python code",
input_schema={"type": "object", "properties": {"code": {"type": "string"}}, "required": ["code"]},
output_schema={"type": "object", "properties": {"output": {"type": "string"}, "error": {"type": "string"}}},
)
assert isinstance(tool.tool_name, BuiltinTool)
assert tool.input_schema is not None
assert tool.output_schema is not None
def test_tool_definition_with_refs(self):
"""Test ToolDefinition preserves $ref/$defs."""
tool = ToolDefinition(
tool_name="process_data",
input_schema={
"type": "object",
"properties": {"data": {"$ref": "#/$defs/DataObject"}},
"$defs": {
"DataObject": {
"type": "object",
"properties": {
"id": {"type": "integer"},
"values": {"type": "array", "items": {"type": "number"}},
},
}
},
},
)
assert "$defs" in tool.input_schema
assert tool.input_schema["properties"]["data"]["$ref"] == "#/$defs/DataObject"
class TestSchemaEquivalence:
"""Test that schemas remain unchanged through serialization."""
def test_schema_roundtrip(self):
"""Test that schemas survive model_dump/model_validate roundtrip."""
original = ToolDef(
name="test",
input_schema={
"type": "object",
"properties": {"x": {"$ref": "#/$defs/X"}},
"$defs": {"X": {"type": "string"}},
},
)
# Serialize and deserialize
dumped = original.model_dump()
restored = ToolDef(**dumped)
# Schemas should be identical
assert restored.input_schema == original.input_schema
assert "$defs" in restored.input_schema
assert restored.input_schema["properties"]["x"]["$ref"] == "#/$defs/X"
def test_json_serialization(self):
"""Test JSON serialization preserves schema."""
import json
tool = ToolDef(
name="test",
input_schema={
"type": "object",
"properties": {"a": {"type": "string"}},
"$defs": {"T": {"type": "number"}},
},
output_schema={"type": "object", "properties": {"b": {"$ref": "#/$defs/T"}}},
)
# Serialize to JSON and back
json_str = tool.model_dump_json()
parsed = json.loads(json_str)
restored = ToolDef(**parsed)
assert restored.input_schema == tool.input_schema
assert restored.output_schema == tool.output_schema
assert "$defs" in restored.input_schema
class TestBackwardsCompatibility:
"""Test handling of legacy code patterns."""
def test_none_schemas(self):
"""Test tools with no schemas (legacy case)."""
tool = ToolDef(name="legacy_tool", description="Tool without schemas", input_schema=None, output_schema=None)
assert tool.input_schema is None
assert tool.output_schema is None
def test_metadata_preserved(self):
"""Test that metadata field still works."""
tool = ToolDef(
name="test", input_schema={"type": "object"}, metadata={"endpoint": "http://example.com", "version": "1.0"}
)
assert tool.metadata["endpoint"] == "http://example.com"
assert tool.metadata["version"] == "1.0"