Merge branch 'meta-llama:main' into feat/litellm_sambanova_usage

This commit is contained in:
Jorge Piedrahita Ortiz 2025-04-10 11:01:51 -05:00 committed by GitHub
commit 13c660f5a5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
57 changed files with 10986 additions and 93 deletions

View file

@ -89,7 +89,6 @@ class ChatAgent(ShieldRunnerMixin):
self,
agent_id: str,
agent_config: AgentConfig,
tempdir: str,
inference_api: Inference,
safety_api: Safety,
tool_runtime_api: ToolRuntime,
@ -99,7 +98,6 @@ class ChatAgent(ShieldRunnerMixin):
):
self.agent_id = agent_id
self.agent_config = agent_config
self.tempdir = tempdir
self.inference_api = inference_api
self.safety_api = safety_api
self.vector_io_api = vector_io_api

View file

@ -7,7 +7,6 @@
import json
import logging
import shutil
import tempfile
import uuid
from typing import AsyncGenerator, List, Optional, Union
@ -64,7 +63,6 @@ class MetaReferenceAgentsImpl(Agents):
self.tool_groups_api = tool_groups_api
self.in_memory_store = InmemoryKVStoreImpl()
self.tempdir = tempfile.mkdtemp()
async def initialize(self) -> None:
self.persistence_store = await kvstore_impl(self.config.persistence_store)
@ -107,7 +105,6 @@ class MetaReferenceAgentsImpl(Agents):
return ChatAgent(
agent_id=agent_id,
agent_config=agent_config,
tempdir=self.tempdir,
inference_api=self.inference_api,
safety_api=self.safety_api,
vector_io_api=self.vector_io_api,

View file

@ -259,7 +259,7 @@ class Llama3Generator:
temperature, top_p = _infer_sampling_params(sampling_params)
for result in self.inner_generator.generate(
llm_inputs=[self.formatter.encode_content(request.content)],
model_inputs=[self.formatter.encode_content(request.content)],
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
@ -284,7 +284,7 @@ class Llama3Generator:
temperature, top_p = _infer_sampling_params(sampling_params)
for result in self.inner_generator.generate(
llm_inputs=[self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request))],
model_inputs=[self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request))],
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,

View file

@ -307,9 +307,10 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
if model.model_type == ModelType.embedding:
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
await self.client.pull(model.provider_resource_id)
response = await self.client.list()
else:
response = await self.client.ps()
# we use list() here instead of ps() -
# - ps() only lists running models, not available models
# - models not currently running are run by the ollama server as needed
response = await self.client.list()
available_models = [m["model"] for m in response["models"]]
if model.provider_resource_id not in available_models:
raise ValueError(