feat(verification): various improvements (#1921)

# What does this PR do?
- provider and their models now live in config.yaml
- better distinguish different cases within a test
- add model key to surface provider's model_id
- include example command to rerun single test case

## Test Plan
<img width="1173" alt="image"
src="https://github.com/user-attachments/assets/b414baf0-c768-451f-8c3b-c2905cf36fac"
/>
This commit is contained in:
ehhuang 2025-04-10 10:26:19 -07:00 committed by GitHub
parent 09a83b1ec1
commit 14146e4b3f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 4449 additions and 8810 deletions

View file

@ -1,6 +1,6 @@
# Test Results Report
*Generated on: 2025-04-08 21:14:02*
*Generated on: 2025-04-09 22:52:19*
*This report was generated by running `python tests/verifications/generate_report.py`*
@ -23,66 +23,107 @@
## Together
*Tests run on: 2025-04-08 16:19:59*
*Tests run on: 2025-04-09 22:50:58*
```bash
pytest tests/verifications/openai/test_chat_completion.py --provider=together -v
# Run all tests for this provider:
pytest tests/verifications/openai_api/test_chat_completion.py --provider=together -v
# Example: Run only the 'earth' case of test_chat_non_streaming_basic:
pytest tests/verifications/openai_api/test_chat_completion.py --provider=together -k "test_chat_non_streaming_basic and earth"
```
| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-17B-128E-Instruct | Llama-4-Scout-17B-16E-Instruct |
**Model Key (Together)**
| Display Name | Full Model ID |
| --- | --- |
| Llama-3.3-70B-Instruct | `meta-llama/Llama-3.3-70B-Instruct-Turbo` |
| Llama-4-Maverick-Instruct | `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8` |
| Llama-4-Scout-Instruct | `meta-llama/Llama-4-Scout-17B-16E-Instruct` |
| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-Instruct | Llama-4-Scout-Instruct |
| --- | --- | --- | --- |
| test_chat_non_streaming_basic (case 0) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_basic (case 1) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_image (case 0) | ⚪ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (case 0) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (case 1) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_tool_calling (case 0) | ✅ | ✅ | ✅ |
| test_chat_streaming_basic (case 0) | ✅ | ❌ | ❌ |
| test_chat_streaming_basic (case 1) | ✅ | ❌ | ❌ |
| test_chat_streaming_image (case 0) | ⚪ | ❌ | ❌ |
| test_chat_streaming_structured_output (case 0) | ✅ | ❌ | ❌ |
| test_chat_streaming_structured_output (case 1) | ✅ | ❌ | ❌ |
| test_chat_non_streaming_basic (earth) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_basic (saturn) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_image | ⚪ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (calendar) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (math) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_tool_calling | ✅ | ✅ | ✅ |
| test_chat_streaming_basic (earth) | ✅ | ❌ | ❌ |
| test_chat_streaming_basic (saturn) | ✅ | ❌ | ❌ |
| test_chat_streaming_image | ⚪ | ❌ | ❌ |
| test_chat_streaming_structured_output (calendar) | ✅ | ❌ | ❌ |
| test_chat_streaming_structured_output (math) | ✅ | ❌ | ❌ |
## Fireworks
*Tests run on: 2025-04-08 16:18:28*
*Tests run on: 2025-04-09 22:50:02*
```bash
pytest tests/verifications/openai/test_chat_completion.py --provider=fireworks -v
# Run all tests for this provider:
pytest tests/verifications/openai_api/test_chat_completion.py --provider=fireworks -v
# Example: Run only the 'earth' case of test_chat_non_streaming_basic:
pytest tests/verifications/openai_api/test_chat_completion.py --provider=fireworks -k "test_chat_non_streaming_basic and earth"
```
| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-17B-128E-Instruct | Llama-4-Scout-17B-16E-Instruct |
**Model Key (Fireworks)**
| Display Name | Full Model ID |
| --- | --- |
| Llama-3.3-70B-Instruct | `accounts/fireworks/models/llama-v3p3-70b-instruct` |
| Llama-4-Maverick-Instruct | `accounts/fireworks/models/llama4-maverick-instruct-basic` |
| Llama-4-Scout-Instruct | `accounts/fireworks/models/llama4-scout-instruct-basic` |
| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-Instruct | Llama-4-Scout-Instruct |
| --- | --- | --- | --- |
| test_chat_non_streaming_basic (case 0) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_basic (case 1) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_image (case 0) | ⚪ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (case 0) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (case 1) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_tool_calling (case 0) | ✅ | ❌ | ❌ |
| test_chat_streaming_basic (case 0) | ✅ | ✅ | ✅ |
| test_chat_streaming_basic (case 1) | ✅ | ✅ | ✅ |
| test_chat_streaming_image (case 0) | ⚪ | ✅ | ✅ |
| test_chat_streaming_structured_output (case 0) | ✅ | ✅ | ✅ |
| test_chat_streaming_structured_output (case 1) | ❌ | ✅ | ✅ |
| test_chat_non_streaming_basic (earth) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_basic (saturn) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_image | ⚪ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (calendar) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_structured_output (math) | ✅ | ✅ | ✅ |
| test_chat_non_streaming_tool_calling | ❌ | ❌ | ❌ |
| test_chat_streaming_basic (earth) | ✅ | ✅ | ✅ |
| test_chat_streaming_basic (saturn) | ✅ | ✅ | ✅ |
| test_chat_streaming_image | ⚪ | ✅ | ✅ |
| test_chat_streaming_structured_output (calendar) | ✅ | ✅ | ✅ |
| test_chat_streaming_structured_output (math) | ✅ | ✅ | ✅ |
## Openai
*Tests run on: 2025-04-08 16:22:02*
*Tests run on: 2025-04-09 22:51:44*
```bash
pytest tests/verifications/openai/test_chat_completion.py --provider=openai -v
# Run all tests for this provider:
pytest tests/verifications/openai_api/test_chat_completion.py --provider=openai -v
# Example: Run only the 'earth' case of test_chat_non_streaming_basic:
pytest tests/verifications/openai_api/test_chat_completion.py --provider=openai -k "test_chat_non_streaming_basic and earth"
```
**Model Key (Openai)**
| Display Name | Full Model ID |
| --- | --- |
| gpt-4o | `gpt-4o` |
| gpt-4o-mini | `gpt-4o-mini` |
| Test | gpt-4o | gpt-4o-mini |
| --- | --- | --- |
| test_chat_non_streaming_basic (case 0) | ✅ | ✅ |
| test_chat_non_streaming_basic (case 1) | ✅ | ✅ |
| test_chat_non_streaming_image (case 0) | ✅ | ✅ |
| test_chat_non_streaming_structured_output (case 0) | ✅ | ✅ |
| test_chat_non_streaming_structured_output (case 1) | ✅ | ✅ |
| test_chat_non_streaming_tool_calling (case 0) | ✅ | ✅ |
| test_chat_streaming_basic (case 0) | ✅ | ✅ |
| test_chat_streaming_basic (case 1) | ✅ | ✅ |
| test_chat_streaming_image (case 0) | ✅ | ✅ |
| test_chat_streaming_structured_output (case 0) | ✅ | ✅ |
| test_chat_streaming_structured_output (case 1) | ✅ | ✅ |
| test_chat_non_streaming_basic (earth) | ✅ | ✅ |
| test_chat_non_streaming_basic (saturn) | ✅ | ✅ |
| test_chat_non_streaming_image | ✅ | ✅ |
| test_chat_non_streaming_structured_output (calendar) | ✅ | ✅ |
| test_chat_non_streaming_structured_output (math) | ✅ | ✅ |
| test_chat_non_streaming_tool_calling | ✅ | ✅ |
| test_chat_streaming_basic (earth) | ✅ | ✅ |
| test_chat_streaming_basic (saturn) | ✅ | ✅ |
| test_chat_streaming_image | ✅ | ✅ |
| test_chat_streaming_structured_output (calendar) | ✅ | ✅ |
| test_chat_streaming_structured_output (math) | ✅ | ✅ |

View file

@ -0,0 +1,10 @@
base_url: https://api.cerebras.ai/v1
api_key_var: CEREBRAS_API_KEY
models:
- llama-3.3-70b
model_display_names:
llama-3.3-70b: Llama-3.3-70B-Instruct
test_exclusions:
llama-3.3-70b:
- test_chat_non_streaming_image
- test_chat_streaming_image

View file

@ -0,0 +1,14 @@
base_url: https://api.fireworks.ai/inference/v1
api_key_var: FIREWORKS_API_KEY
models:
- accounts/fireworks/models/llama-v3p3-70b-instruct
- accounts/fireworks/models/llama4-scout-instruct-basic
- accounts/fireworks/models/llama4-maverick-instruct-basic
model_display_names:
accounts/fireworks/models/llama-v3p3-70b-instruct: Llama-3.3-70B-Instruct
accounts/fireworks/models/llama4-scout-instruct-basic: Llama-4-Scout-Instruct
accounts/fireworks/models/llama4-maverick-instruct-basic: Llama-4-Maverick-Instruct
test_exclusions:
accounts/fireworks/models/llama-v3p3-70b-instruct:
- test_chat_non_streaming_image
- test_chat_streaming_image

View file

@ -0,0 +1,14 @@
base_url: https://api.groq.com/openai/v1
api_key_var: GROQ_API_KEY
models:
- llama-3.3-70b-versatile
- llama-4-scout-17b-16e-instruct
- llama-4-maverick-17b-128e-instruct
model_display_names:
llama-3.3-70b-versatile: Llama-3.3-70B-Instruct
llama-4-scout-17b-16e-instruct: Llama-4-Scout-Instruct
llama-4-maverick-17b-128e-instruct: Llama-4-Maverick-Instruct
test_exclusions:
llama-3.3-70b-versatile:
- test_chat_non_streaming_image
- test_chat_streaming_image

View file

@ -0,0 +1,9 @@
base_url: https://api.openai.com/v1
api_key_var: OPENAI_API_KEY
models:
- gpt-4o
- gpt-4o-mini
model_display_names:
gpt-4o: gpt-4o
gpt-4o-mini: gpt-4o-mini
test_exclusions: {}

View file

@ -0,0 +1,14 @@
base_url: https://api.together.xyz/v1
api_key_var: TOGETHER_API_KEY
models:
- meta-llama/Llama-3.3-70B-Instruct-Turbo
- meta-llama/Llama-4-Scout-17B-16E-Instruct
- meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
model_display_names:
meta-llama/Llama-3.3-70B-Instruct-Turbo: Llama-3.3-70B-Instruct
meta-llama/Llama-4-Scout-17B-16E-Instruct: Llama-4-Scout-Instruct
meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8: Llama-4-Maverick-Instruct
test_exclusions:
meta-llama/Llama-3.3-70B-Instruct-Turbo:
- test_chat_non_streaming_image
- test_chat_streaming_image

View file

@ -4,6 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
import pytest
def pytest_addoption(parser):
parser.addoption(
@ -14,7 +18,7 @@ def pytest_addoption(parser):
parser.addoption(
"--api-key",
action="store",
help="API key",
help="API key to use for the provider",
)
parser.addoption(
"--provider",
@ -24,5 +28,64 @@ def pytest_addoption(parser):
pytest_plugins = [
"tests.verifications.openai.fixtures.fixtures",
"pytest_jsonreport",
"tests.verifications.openai_api.fixtures.fixtures",
"tests.verifications.openai_api.fixtures.load",
]
@pytest.hookimpl(optionalhook=True)
def pytest_json_runtest_metadata(item, call):
"""Add model and case_id to pytest-json report metadata."""
metadata = {}
nodeid = item.nodeid
# 1. Extract model from callspec if available
model = item.callspec.params.get("model") if hasattr(item, "callspec") else None
if model:
metadata["model"] = model
else:
# Fallback: Try parsing from nodeid (less reliable)
match_model = re.search(r"\[(.*?)-", nodeid)
if match_model:
model = match_model.group(1) # Store model even if found via fallback
metadata["model"] = model
else:
print(f"Warning: Could not determine model for test {nodeid}")
model = None # Ensure model is None if not found
# 2. Extract case_id using the known model string if possible
if model:
# Construct a regex pattern to find the case_id *after* the model name and a hyphen.
# Escape the model name in case it contains regex special characters.
pattern = re.escape(model) + r"-(.*?)\]$"
match_case = re.search(pattern, nodeid)
if match_case:
case_id = match_case.group(1)
metadata["case_id"] = case_id
else:
# Fallback if the pattern didn't match (e.g., nodeid format unexpected)
# Try the old less specific regex as a last resort.
match_case_fallback = re.search(r"-(.*?)\]$", nodeid)
if match_case_fallback:
case_id = match_case_fallback.group(1)
metadata["case_id"] = case_id
print(f"Warning: Used fallback regex to parse case_id from nodeid {nodeid}")
else:
print(f"Warning: Could not parse case_id from nodeid {nodeid} even with fallback.")
if "case" in (item.callspec.params if hasattr(item, "callspec") else {}):
metadata["case_id"] = "parsing_failed"
elif "case" in (item.callspec.params if hasattr(item, "callspec") else {}):
# Cannot reliably parse case_id without model, but we know it's a case test.
# Try the generic fallback regex.
match_case_fallback = re.search(r"-(.*?)\]$", nodeid)
if match_case_fallback:
case_id = match_case_fallback.group(1)
metadata["case_id"] = case_id
print(f"Warning: Used fallback regex to parse case_id from nodeid {nodeid} (model unknown)")
else:
print(f"Warning: Could not parse case_id from nodeid {nodeid} (model unknown)")
metadata["case_id"] = "parsing_failed_no_model"
# else: Not a test with a model or case param we need to handle.
return metadata

View file

@ -4,27 +4,48 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "pytest-json-report",
# "pyyaml",
# ]
# ///
"""
Test Report Generator
Requirements:
pip install pytest-json-report
Description:
This script runs pytest tests (specifically designed for OpenAI API compatibility checks)
for different providers, aggregates the results from JSON reports, and generates
a markdown summary report (REPORT.md).
It automatically cleans up old test result files, keeping only the latest
per provider.
Configuration:
- Provider details (models, display names) are loaded from `tests/verifications/config.yaml`.
- Test cases are defined in YAML files within `tests/verifications/openai_api/fixtures/test_cases/`.
- Test results are stored in `tests/verifications/test_results/`.
Usage:
# Generate a report using existing test results
# Generate a report using the latest existing test results
python tests/verifications/generate_report.py
# Run tests and generate a report
# Run tests for all configured providers and generate a report
python tests/verifications/generate_report.py --run-tests
# Run tests for specific providers
# Run tests only for specific providers (space-separated)
python tests/verifications/generate_report.py --run-tests --providers fireworks openai
# Run tests matching a keyword expression (uses pytest -k)
python tests/verifications/generate_report.py --run-tests --providers fireworks --k "streaming"
# Run a specific test case for a provider
python tests/verifications/generate_report.py --run-tests --providers fireworks --k "test_chat_streaming_basic and basic_earth"
# Save the report to a custom location
python tests/verifications/generate_report.py --output custom_report.md
# Clean up old test result files
python tests/verifications/generate_report.py --cleanup
"""
import argparse
@ -35,6 +56,9 @@ import subprocess
import time
from collections import defaultdict
from pathlib import Path
from typing import Any, DefaultDict, Dict, Set, Tuple
from tests.verifications.openai_api.fixtures.fixtures import _load_all_verification_configs
# Define the root directory for test results
RESULTS_DIR = Path(__file__).parent / "test_results"
@ -43,17 +67,12 @@ RESULTS_DIR.mkdir(exist_ok=True)
# Maximum number of test result files to keep per provider
MAX_RESULTS_PER_PROVIDER = 1
# Custom order of providers
PROVIDER_ORDER = ["together", "fireworks", "groq", "cerebras", "openai"]
# Dictionary to store providers and their models (will be populated dynamically)
PROVIDERS = defaultdict(set)
# Tests will be dynamically extracted from results
ALL_TESTS = set()
VERIFICATION_CONFIG = _load_all_verification_configs()
def run_tests(provider):
def run_tests(provider, keyword=None):
"""Run pytest for a specific provider and save results"""
print(f"Running tests for provider: {provider}")
@ -61,20 +80,28 @@ def run_tests(provider):
result_file = RESULTS_DIR / f"{provider}_{timestamp}.json"
temp_json_file = RESULTS_DIR / f"temp_{provider}_{timestamp}.json"
# Determine project root directory relative to this script
project_root = Path(__file__).parent.parent.parent
# Run pytest with JSON output
cmd = [
"python",
"-m",
"pytest",
"tests/verifications/openai/test_chat_completion.py",
"tests/verifications/openai_api/test_chat_completion.py",
f"--provider={provider}",
"-v",
"--json-report",
f"--json-report-file={temp_json_file}",
]
# Append -k argument if provided
if keyword:
cmd.extend(["-k", keyword])
try:
result = subprocess.run(cmd, capture_output=True, text=True)
# Run subprocess with cwd set to project root
result = subprocess.run(cmd, capture_output=True, text=True, cwd=project_root)
print(f"Pytest exit code: {result.returncode}")
# Check if the JSON file was created
@ -103,18 +130,30 @@ def run_tests(provider):
return None
def parse_results(result_file):
"""Parse the test results file and extract pass/fail by model and test"""
def parse_results(
result_file,
) -> Tuple[DefaultDict[str, DefaultDict[str, Dict[str, bool]]], DefaultDict[str, Set[str]], Set[str]]:
"""Parse a single test results file.
Returns:
Tuple containing:
- parsed_results: DefaultDict[provider, DefaultDict[model, Dict[test_name, pass_status]]]
- providers_in_file: DefaultDict[provider, Set[model]] found in this file.
- tests_in_file: Set[test_name] found in this file.
"""
if not os.path.exists(result_file):
print(f"Results file does not exist: {result_file}")
return {}
# Return empty defaultdicts/set matching the type hint
return defaultdict(lambda: defaultdict(dict)), defaultdict(set), set()
with open(result_file, "r") as f:
results = json.load(f)
# Initialize results dictionary
parsed_results = defaultdict(lambda: defaultdict(dict))
provider = os.path.basename(result_file).split("_")[0]
# Initialize results dictionary with specific types
parsed_results: DefaultDict[str, DefaultDict[str, Dict[str, bool]]] = defaultdict(lambda: defaultdict(dict))
providers_in_file: DefaultDict[str, Set[str]] = defaultdict(set)
tests_in_file: Set[str] = set()
provider: str = os.path.basename(result_file).split("_")[0]
# Debug: Print summary of test results
print(f"Test results summary for {provider}:")
@ -127,124 +166,72 @@ def parse_results(result_file):
# Extract test results
if "tests" not in results or not results["tests"]:
print(f"No test results found in {result_file}")
return parsed_results
# Return empty defaultdicts/set matching the type hint
return defaultdict(lambda: defaultdict(dict)), defaultdict(set), set()
# Map for normalizing model names
model_name_map = {
"Llama-3.3-8B-Instruct": "Llama-3.3-8B-Instruct",
"Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
"Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
"Llama-4-Scout-17B-16E": "Llama-4-Scout-17B-16E-Instruct",
"Llama-4-Scout-17B-16E-Instruct": "Llama-4-Scout-17B-16E-Instruct",
"Llama-4-Maverick-17B-128E": "Llama-4-Maverick-17B-128E-Instruct",
"Llama-4-Maverick-17B-128E-Instruct": "Llama-4-Maverick-17B-128E-Instruct",
"gpt-4o": "gpt-4o",
"gpt-4o-mini": "gpt-4o-mini",
}
# Keep track of all models found for this provider
provider_models = set()
# Track all unique test cases for each base test
test_case_counts = defaultdict(int)
# First pass: count the number of cases for each test
# Process the tests
for test in results["tests"]:
test_id = test.get("nodeid", "")
if "call" in test:
test_name = test_id.split("::")[1].split("[")[0]
input_output_match = re.search(r"\[input_output(\d+)-", test_id)
if input_output_match:
test_case_counts[test_name] += 1
if not (call_phase := test.get("call")):
continue
call_outcome = call_phase.get("outcome")
if call_outcome not in ("passed", "failed"):
continue
# Second pass: process the tests with case numbers only for tests with multiple cases
for test in results["tests"]:
test_id = test.get("nodeid", "")
outcome = test.get("outcome", "")
# --- Extract data from metadata ---
metadata = test.get("metadata", {})
model = metadata.get("model")
case_id = metadata.get("case_id") # String ID (if provided)
case_index = metadata.get("case_index") # Integer index (if no ID provided)
# Only process tests that have been executed (not setup errors)
if "call" in test:
# Regular test that actually ran
test_name = test_id.split("::")[1].split("[")[0]
# Check if we have a model and at least one case identifier
if not model or (case_id is None and case_index is None):
print(
f"Warning: Missing 'model' or case identifier ('case_id'/'case_index') metadata for test: {test_id}. Skipping."
)
continue
# Extract input_output parameter to differentiate between test cases
input_output_match = re.search(r"\[input_output(\d+)-", test_id)
input_output_index = input_output_match.group(1) if input_output_match else ""
try:
test_name_base = test_id.split("::")[1].split("[")[0]
except (IndexError, ValueError) as e:
print(f"Warning: Could not parse base test name for {test_id}. Error: {e}. Skipping.")
continue
# Create a more detailed test name with case number only if there are multiple cases
detailed_test_name = test_name
if input_output_index and test_case_counts[test_name] > 1:
detailed_test_name = f"{test_name} (case {input_output_index})"
# Construct detailed test name using ID or index
if case_id is not None:
detailed_test_name = f"{test_name_base} ({case_id})"
elif case_index == 0:
# If case_id is missing and index is 0, assume single case, use base name only
detailed_test_name = test_name_base
elif case_index is not None: # case_index > 0
# Use case_index for naming if case_id wasn't provided and index > 0
detailed_test_name = f"{test_name_base} (case{case_index})"
else:
# This case should be prevented by the earlier check, but handle defensively
print(f"Error: No case identifier found for test {test_id} after initial check. Skipping.")
continue
# Track all unique test names
ALL_TESTS.add(detailed_test_name)
# Populate collections for this file
tests_in_file.add(detailed_test_name)
providers_in_file[provider].add(model)
# Extract model name from test_id using a more robust pattern
model_match = re.search(r"\[input_output\d+-([^\]]+)\]", test_id)
if model_match:
raw_model = model_match.group(1)
model = model_name_map.get(raw_model, raw_model)
if call_outcome == "passed":
parsed_results[provider][model][detailed_test_name] = True
elif call_outcome == "failed":
parsed_results[provider][model][detailed_test_name] = False
# Add to set of known models for this provider
provider_models.add(model)
# Final Summary Warning (Optional)
if not parsed_results.get(provider):
print(f"Warning: No valid test results parsed for provider {provider} from file {result_file}")
# Also update the global PROVIDERS dictionary
PROVIDERS[provider].add(model)
# Store the result
if outcome == "passed":
parsed_results[provider][model][detailed_test_name] = True
else:
parsed_results[provider][model][detailed_test_name] = False
print(f"Parsed test result: {detailed_test_name} for model {model}: {outcome}")
elif outcome == "error" and "setup" in test and test.get("setup", {}).get("outcome") == "failed":
# This is a setup failure, which likely means a configuration issue
# Extract the base test name and model name
parts = test_id.split("::")
if len(parts) > 1:
test_name = parts[1].split("[")[0]
# Extract input_output parameter to differentiate between test cases
input_output_match = re.search(r"\[input_output(\d+)-", test_id)
input_output_index = input_output_match.group(1) if input_output_match else ""
# Create a more detailed test name with case number only if there are multiple cases
detailed_test_name = test_name
if input_output_index and test_case_counts[test_name] > 1:
detailed_test_name = f"{test_name} (case {input_output_index})"
if detailed_test_name in ALL_TESTS:
# Use a more robust pattern for model extraction
model_match = re.search(r"\[input_output\d+-([^\]]+)\]", test_id)
if model_match:
raw_model = model_match.group(1)
model = model_name_map.get(raw_model, raw_model)
# Add to set of known models for this provider
provider_models.add(model)
# Also update the global PROVIDERS dictionary
PROVIDERS[provider].add(model)
# Mark setup failures as false (failed)
parsed_results[provider][model][detailed_test_name] = False
print(f"Parsed setup failure: {detailed_test_name} for model {model}")
# Debug: Print parsed results
if not parsed_results[provider]:
print(f"Warning: No test results parsed for provider {provider}")
else:
for model, tests in parsed_results[provider].items():
print(f"Model {model}: {len(tests)} test results")
return parsed_results
return parsed_results, providers_in_file, tests_in_file
def cleanup_old_results():
"""Clean up old test result files, keeping only the newest N per provider"""
for provider in PROVIDERS.keys():
def cleanup_old_results(providers_to_clean: Dict[str, Set[str]]):
"""Clean up old test result files, keeping only the newest N per provider."""
# Use the passed-in providers dictionary
for provider in providers_to_clean.keys():
# Get all result files for this provider
provider_files = list(RESULTS_DIR.glob(f"{provider}_*.json"))
@ -289,8 +276,17 @@ def get_latest_results_by_provider():
return provider_results
def generate_report(results_dict, output_file=None):
"""Generate the markdown report"""
def generate_report(
results_dict: Dict[str, Any], providers: Dict[str, Set[str]], all_tests: Set[str], output_file=None
):
"""Generate the markdown report.
Args:
results_dict: Aggregated results [provider][model][test_name] -> status.
providers: Dict of all providers and their models {provider: {models}}.
all_tests: Set of all test names found.
output_file: Optional path to save the report.
"""
if output_file is None:
# Default to creating the report in the same directory as this script
output_file = Path(__file__).parent / "REPORT.md"
@ -299,8 +295,8 @@ def generate_report(results_dict, output_file=None):
# Get the timestamp from result files
provider_timestamps = {}
provider_results = get_latest_results_by_provider()
for provider, result_file in provider_results.items():
provider_results_files = get_latest_results_by_provider()
for provider, result_file in provider_results_files.items():
# Extract timestamp from filename (format: provider_timestamp.json)
try:
timestamp_str = result_file.stem.split("_")[1]
@ -310,12 +306,33 @@ def generate_report(results_dict, output_file=None):
except (IndexError, ValueError):
provider_timestamps[provider] = "Unknown"
# Convert provider model sets to sorted lists
for provider in PROVIDERS:
PROVIDERS[provider] = sorted(PROVIDERS[provider])
# Convert provider model sets to sorted lists (use passed-in providers dict)
providers_sorted = {prov: sorted(models) for prov, models in providers.items()}
# Sort tests alphabetically
sorted_tests = sorted(ALL_TESTS)
# Sort tests alphabetically (use passed-in all_tests set)
sorted_tests = sorted(all_tests)
# Calculate counts for each base test name
base_test_case_counts: DefaultDict[str, int] = defaultdict(int)
base_test_name_map: Dict[str, str] = {}
for test_name in sorted_tests:
match = re.match(r"^(.*?)( \([^)]+\))?$", test_name)
if match:
base_name = match.group(1).strip()
base_test_case_counts[base_name] += 1
base_test_name_map[test_name] = base_name
else:
# Should not happen with current naming, but handle defensively
base_test_case_counts[test_name] += 1
base_test_name_map[test_name] = test_name
if not sorted_tests:
print("Warning: No test results found to generate a report.")
# Optionally create an empty report or return early
with open(output_file, "w") as f:
f.write("# Test Results Report\n\nNo test results found.\n")
print(f"Generated empty report: {output_file}")
return
report = ["# Test Results Report\n"]
report.append(f"*Generated on: {time.strftime('%Y-%m-%d %H:%M:%S')}*\n")
@ -336,19 +353,15 @@ def generate_report(results_dict, output_file=None):
# Add a summary section
report.append("## Summary\n")
# Count total tests and passes
# Count total tests and passes (use passed-in providers and all_tests)
total_tests = 0
passed_tests = 0
provider_totals = {}
# Prepare summary data
for provider in PROVIDERS.keys():
for provider, models in providers_sorted.items():
provider_passed = 0
provider_total = 0
if provider in results_dict:
provider_models = PROVIDERS[provider]
for model in provider_models:
for model in models:
if model in results_dict[provider]:
model_results = results_dict[provider][model]
for test in sorted_tests:
@ -358,33 +371,26 @@ def generate_report(results_dict, output_file=None):
if model_results[test]:
provider_passed += 1
passed_tests += 1
provider_totals[provider] = (provider_passed, provider_total)
# Add summary table
# Add summary table (use passed-in providers dict)
report.append("| Provider | Pass Rate | Tests Passed | Total Tests |")
report.append("| --- | --- | --- | --- |")
# Use the custom order for summary table
for provider in [p for p in PROVIDER_ORDER if p in PROVIDERS]:
for provider in [p for p in PROVIDER_ORDER if p in providers]: # Check against keys of passed-in dict
passed, total = provider_totals.get(provider, (0, 0))
pass_rate = f"{(passed / total * 100):.1f}%" if total > 0 else "N/A"
report.append(f"| {provider.capitalize()} | {pass_rate} | {passed} | {total} |")
# Add providers not in the custom order
for provider in [p for p in PROVIDERS if p not in PROVIDER_ORDER]:
for provider in [p for p in providers if p not in PROVIDER_ORDER]: # Check against keys of passed-in dict
passed, total = provider_totals.get(provider, (0, 0))
pass_rate = f"{(passed / total * 100):.1f}%" if total > 0 else "N/A"
report.append(f"| {provider.capitalize()} | {pass_rate} | {passed} | {total} |")
report.append("\n")
# Process each provider in the custom order, then any additional providers
for provider in sorted(
PROVIDERS.keys(), key=lambda p: (PROVIDER_ORDER.index(p) if p in PROVIDER_ORDER else float("inf"), p)
providers_sorted.keys(), key=lambda p: (PROVIDER_ORDER.index(p) if p in PROVIDER_ORDER else float("inf"), p)
):
if not PROVIDERS[provider]:
# Skip providers with no models
provider_models = providers_sorted[provider] # Use sorted models
if not provider_models:
continue
report.append(f"\n## {provider.capitalize()}\n")
@ -394,34 +400,70 @@ def generate_report(results_dict, output_file=None):
report.append(f"*Tests run on: {provider_timestamps[provider]}*\n")
# Add test command for reproducing results
test_cmd = f"pytest tests/verifications/openai/test_chat_completion.py --provider={provider} -v"
report.append(f"```bash\n{test_cmd}\n```\n")
test_cmd_all = f"pytest tests/verifications/openai_api/test_chat_completion.py --provider={provider} -v"
report.append(f"```bash\n# Run all tests for this provider:\n{test_cmd_all}\n")
# Get the relevant models for this provider
provider_models = PROVIDERS[provider]
# Find an example test with a case ID
example_base_test_name = None
example_case_id = None
# Get first test as fallback base, handle empty list
first_test_name = sorted_tests[0] if sorted_tests else "unknown_test"
# Create table header with models as columns
header = "| Test | " + " | ".join(provider_models) + " |"
match = re.match(r"^(.*?) \((.*?)\)$", first_test_name)
if match:
example_base_test_name = match.group(1).strip()
example_case_id = match.group(2).strip()
else:
example_base_test_name = first_test_name
base_name = base_test_name_map.get(test, test) # Get base name
case_count = base_test_case_counts.get(base_name, 1) # Get count
filter_str = f"{example_base_test_name} and {example_case_id}" if case_count > 1 else example_base_test_name
test_cmd_specific_case = (
f'pytest tests/verifications/openai_api/test_chat_completion.py --provider={provider} -k "{filter_str}"'
)
report.append(
f"# Example: Run only the '{example_case_id}' case of {example_base_test_name}:\n{test_cmd_specific_case}\n```\n"
)
# Get display names (use passed-in providers dict)
provider_config = VERIFICATION_CONFIG.get("providers", {}).get(provider, {})
display_name_map = provider_config.get("model_display_names", {})
# Add Model Key Table (use provider_models)
report.append(f"\n**Model Key ({provider.capitalize()})**\n")
provider_key_lines = ["| Display Name | Full Model ID |", "| --- | --- |"]
for model_id in provider_models:
display_name = display_name_map.get(model_id, model_id)
provider_key_lines.append(f"| {display_name} | `{model_id}` |")
report.extend(provider_key_lines)
report.append("\n")
# Create results table header (use provider_models)
display_names = [display_name_map.get(m, m) for m in provider_models]
header = "| Test | " + " | ".join(display_names) + " |"
separator = "| --- | " + " | ".join(["---"] * len(provider_models)) + " |"
report.append(header)
report.append(separator)
# Get results for this provider
provider_results = results_dict.get(provider, {})
# Get results for this provider from results_dict
provider_results_data = results_dict.get(provider, {})
# Add rows for each test
# Add rows for each test (use sorted_tests)
for test in sorted_tests:
row = f"| {test} |"
# Determine display name based on case count
base_name = base_test_name_map.get(test, test) # Get base name
case_count = base_test_case_counts.get(base_name, 1) # Get count
display_test_name = base_name if case_count == 1 else test # Choose display name
row = f"| {display_test_name} |" # Use display name
# Add results for each model in this test
for model in provider_models:
if model in provider_results and test in provider_results[model]:
result = pass_icon if provider_results[model][test] else fail_icon
for model_id in provider_models:
if model_id in provider_results_data and test in provider_results_data[model_id]:
result = pass_icon if provider_results_data[model_id][test] else fail_icon
else:
result = na_icon
row += f" {result} |"
report.append(row)
# Write to file
@ -442,9 +484,13 @@ def main():
help="Specify providers to test (comma-separated or space-separated, default: all)",
)
parser.add_argument("--output", type=str, help="Output file location (default: tests/verifications/REPORT.md)")
parser.add_argument("--k", type=str, help="Keyword expression to filter tests (passed to pytest -k)")
args = parser.parse_args()
all_results = {}
# Initialize collections to aggregate results in main
aggregated_providers = defaultdict(set)
aggregated_tests = set()
if args.run_tests:
# Get list of available providers from command line or use detected providers
@ -463,22 +509,31 @@ def main():
for provider in test_providers:
provider = provider.strip() # Remove any whitespace
result_file = run_tests(provider)
result_file = run_tests(provider, keyword=args.k)
if result_file:
provider_results = parse_results(result_file)
all_results.update(provider_results)
# Parse and aggregate results
parsed_results, providers_in_file, tests_in_file = parse_results(result_file)
all_results.update(parsed_results)
for prov, models in providers_in_file.items():
aggregated_providers[prov].update(models)
aggregated_tests.update(tests_in_file)
else:
# Use existing results
provider_result_files = get_latest_results_by_provider()
for result_file in provider_result_files.values():
provider_results = parse_results(result_file)
all_results.update(provider_results)
# Parse and aggregate results
parsed_results, providers_in_file, tests_in_file = parse_results(result_file)
all_results.update(parsed_results)
for prov, models in providers_in_file.items():
aggregated_providers[prov].update(models)
aggregated_tests.update(tests_in_file)
# Generate the report
generate_report(all_results, args.output)
# Generate the report, passing aggregated data
generate_report(all_results, aggregated_providers, aggregated_tests, args.output)
cleanup_old_results()
# Cleanup, passing aggregated providers
cleanup_old_results(aggregated_providers)
if __name__ == "__main__":

View file

@ -1,97 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import pytest
from openai import OpenAI
@pytest.fixture
def providers_model_mapping():
"""
Mapping from model names used in test cases to provider's model names.
"""
return {
"fireworks": {
"Llama-3.3-70B-Instruct": "accounts/fireworks/models/llama-v3p1-70b-instruct",
"Llama-3.2-11B-Vision-Instruct": "accounts/fireworks/models/llama-v3p2-11b-vision-instruct",
"Llama-4-Scout-17B-16E-Instruct": "accounts/fireworks/models/llama4-scout-instruct-basic",
"Llama-4-Maverick-17B-128E-Instruct": "accounts/fireworks/models/llama4-maverick-instruct-basic",
},
"together": {
"Llama-3.3-70B-Instruct": "meta-llama/Llama-3.3-70B-Instruct-Turbo",
"Llama-3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
"Llama-4-Scout-17B-16E-Instruct": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"Llama-4-Maverick-17B-128E-Instruct": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
},
"groq": {
"Llama-3.3-70B-Instruct": "llama-3.3-70b-versatile",
"Llama-3.2-11B-Vision-Instruct": "llama-3.2-11b-vision-preview",
"Llama-4-Scout-17B-16E-Instruct": "llama-4-scout-17b-16e-instruct",
"Llama-4-Maverick-17B-128E-Instruct": "llama-4-maverick-17b-128e-instruct",
},
"cerebras": {
"Llama-3.3-70B-Instruct": "llama-3.3-70b",
},
"openai": {
"gpt-4o": "gpt-4o",
"gpt-4o-mini": "gpt-4o-mini",
},
}
@pytest.fixture
def provider_metadata():
return {
"fireworks": ("https://api.fireworks.ai/inference/v1", "FIREWORKS_API_KEY"),
"together": ("https://api.together.xyz/v1", "TOGETHER_API_KEY"),
"groq": ("https://api.groq.com/openai/v1", "GROQ_API_KEY"),
"cerebras": ("https://api.cerebras.ai/v1", "CEREBRAS_API_KEY"),
"openai": ("https://api.openai.com/v1", "OPENAI_API_KEY"),
}
@pytest.fixture
def provider(request, provider_metadata):
provider = request.config.getoption("--provider")
base_url = request.config.getoption("--base-url")
if provider and base_url and provider_metadata[provider][0] != base_url:
raise ValueError(f"Provider {provider} is not supported for base URL {base_url}")
if not provider:
if not base_url:
raise ValueError("Provider and base URL are not provided")
for provider, metadata in provider_metadata.items():
if metadata[0] == base_url:
provider = provider
break
return provider
@pytest.fixture
def base_url(request, provider, provider_metadata):
return request.config.getoption("--base-url") or provider_metadata[provider][0]
@pytest.fixture
def api_key(request, provider, provider_metadata):
return request.config.getoption("--api-key") or os.getenv(provider_metadata[provider][1])
@pytest.fixture
def model_mapping(provider, providers_model_mapping):
return providers_model_mapping[provider]
@pytest.fixture
def openai_client(base_url, api_key):
return OpenAI(
base_url=base_url,
api_key=api_key,
)

View file

@ -1,202 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
import pytest
from pydantic import BaseModel
from tests.verifications.openai.fixtures.load import load_test_cases
chat_completion_test_cases = load_test_cases("chat_completion")
@pytest.fixture
def correct_model_name(model, provider, providers_model_mapping):
"""Return the provider-specific model name based on the generic model name."""
mapping = providers_model_mapping[provider]
if model not in mapping:
pytest.skip(f"Provider {provider} does not support model {model}")
return mapping[model]
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_basic"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_basic"]["test_params"]["input_output"],
)
def test_chat_non_streaming_basic(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert input_output["output"].lower() in response.choices[0].message.content.lower()
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_basic"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_basic"]["test_params"]["input_output"],
)
def test_chat_streaming_basic(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=True,
)
content = ""
for chunk in response:
content += chunk.choices[0].delta.content or ""
# TODO: add detailed type validation
assert input_output["output"].lower() in content.lower()
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_image"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_image"]["test_params"]["input_output"],
)
def test_chat_non_streaming_image(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert input_output["output"].lower() in response.choices[0].message.content.lower()
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_image"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_image"]["test_params"]["input_output"],
)
def test_chat_streaming_image(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=True,
)
content = ""
for chunk in response:
content += chunk.choices[0].delta.content or ""
# TODO: add detailed type validation
assert input_output["output"].lower() in content.lower()
@pytest.mark.parametrize(
"model",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["model"],
)
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["input_output"],
)
def test_chat_non_streaming_structured_output(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
response_format=input_output["input"]["response_format"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
maybe_json_content = response.choices[0].message.content
validate_structured_output(maybe_json_content, input_output["output"])
@pytest.mark.parametrize(
"model",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["model"],
)
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["input_output"],
)
def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
response_format=input_output["input"]["response_format"],
stream=True,
)
maybe_json_content = ""
for chunk in response:
maybe_json_content += chunk.choices[0].delta.content or ""
validate_structured_output(maybe_json_content, input_output["output"])
@pytest.mark.parametrize(
"model",
chat_completion_test_cases["test_tool_calling"]["test_params"]["model"],
)
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_tool_calling"]["test_params"]["input_output"],
)
def test_chat_non_streaming_tool_calling(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
tools=input_output["input"]["tools"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert len(response.choices[0].message.tool_calls) > 0
assert input_output["output"] == "get_weather_tool_call"
assert response.choices[0].message.tool_calls[0].function.name == "get_weather"
# TODO: add detailed type validation
def get_structured_output(maybe_json_content: str, schema_name: str) -> Any | None:
if schema_name == "valid_calendar_event":
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
try:
calendar_event = CalendarEvent.model_validate_json(maybe_json_content)
return calendar_event
except Exception:
return None
elif schema_name == "valid_math_reasoning":
class Step(BaseModel):
explanation: str
output: str
class MathReasoning(BaseModel):
steps: list[Step]
final_answer: str
try:
math_reasoning = MathReasoning.model_validate_json(maybe_json_content)
return math_reasoning
except Exception:
return None
return None
def validate_structured_output(maybe_json_content: str, schema_name: str) -> None:
structured_output = get_structured_output(maybe_json_content, schema_name)
assert structured_output is not None
if schema_name == "valid_calendar_event":
assert structured_output.name is not None
assert structured_output.date is not None
assert len(structured_output.participants) == 2
elif schema_name == "valid_math_reasoning":
assert len(structured_output.final_answer) > 0

View file

@ -0,0 +1,105 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from pathlib import Path
import pytest
import yaml
from openai import OpenAI
# --- Helper Function to Load Config ---
def _load_all_verification_configs():
"""Load and aggregate verification configs from the conf/ directory."""
# Note: Path is relative to *this* file (fixtures.py)
conf_dir = Path(__file__).parent.parent.parent / "conf"
if not conf_dir.is_dir():
# Use pytest.fail if called during test collection, otherwise raise error
# For simplicity here, we'll raise an error, assuming direct calls
# are less likely or can handle it.
raise FileNotFoundError(f"Verification config directory not found at {conf_dir}")
all_provider_configs = {}
yaml_files = list(conf_dir.glob("*.yaml"))
if not yaml_files:
raise FileNotFoundError(f"No YAML configuration files found in {conf_dir}")
for config_path in yaml_files:
provider_name = config_path.stem
try:
with open(config_path, "r") as f:
provider_config = yaml.safe_load(f)
if provider_config:
all_provider_configs[provider_name] = provider_config
else:
# Log warning if possible, or just skip empty files silently
print(f"Warning: Config file {config_path} is empty or invalid.")
except Exception as e:
raise IOError(f"Error loading config file {config_path}: {e}") from e
return {"providers": all_provider_configs}
# --- End Helper Function ---
@pytest.fixture(scope="session")
def verification_config():
"""Pytest fixture to provide the loaded verification config."""
try:
return _load_all_verification_configs()
except (FileNotFoundError, IOError) as e:
pytest.fail(str(e)) # Fail test collection if config loading fails
@pytest.fixture
def provider(request, verification_config):
provider = request.config.getoption("--provider")
base_url = request.config.getoption("--base-url")
if provider and base_url and verification_config["providers"][provider]["base_url"] != base_url:
raise ValueError(f"Provider {provider} is not supported for base URL {base_url}")
if not provider:
if not base_url:
raise ValueError("Provider and base URL are not provided")
for provider, metadata in verification_config["providers"].items():
if metadata["base_url"] == base_url:
provider = provider
break
return provider
@pytest.fixture
def base_url(request, provider, verification_config):
return request.config.getoption("--base-url") or verification_config["providers"][provider]["base_url"]
@pytest.fixture
def api_key(request, provider, verification_config):
provider_conf = verification_config.get("providers", {}).get(provider, {})
api_key_env_var = provider_conf.get("api_key_var")
key_from_option = request.config.getoption("--api-key")
key_from_env = os.getenv(api_key_env_var) if api_key_env_var else None
final_key = key_from_option or key_from_env
return final_key
@pytest.fixture
def model_mapping(provider, providers_model_mapping):
return providers_model_mapping[provider]
@pytest.fixture
def openai_client(base_url, api_key):
return OpenAI(
base_url=base_url,
api_key=api_key,
)

View file

@ -1,31 +1,24 @@
test_chat_basic:
test_name: test_chat_basic
test_params:
input_output:
- input:
case:
- case_id: "earth"
input:
messages:
- content: Which planet do humans live on?
role: user
output: Earth
- input:
- case_id: "saturn"
input:
messages:
- content: Which planet has rings around it with a name starting with letter
S?
role: user
output: Saturn
model:
- Llama-3.3-8B-Instruct
- Llama-3.3-70B-Instruct
- Llama-4-Scout-17B-16E
- Llama-4-Scout-17B-16E-Instruct
- Llama-4-Maverick-17B-128E
- Llama-4-Maverick-17B-128E-Instruct
- gpt-4o
- gpt-4o-mini
test_chat_image:
test_name: test_chat_image
test_params:
input_output:
case:
- input:
messages:
- content:
@ -36,18 +29,12 @@ test_chat_image:
type: image_url
role: user
output: llama
model:
- Llama-4-Scout-17B-16E
- Llama-4-Scout-17B-16E-Instruct
- Llama-4-Maverick-17B-128E
- Llama-4-Maverick-17B-128E-Instruct
- gpt-4o
- gpt-4o-mini
test_chat_structured_output:
test_name: test_chat_structured_output
test_params:
input_output:
- input:
case:
- case_id: "calendar"
input:
messages:
- content: Extract the event information.
role: system
@ -77,7 +64,8 @@ test_chat_structured_output:
type: object
type: json_schema
output: valid_calendar_event
- input:
- case_id: "math"
input:
messages:
- content: You are a helpful math tutor. Guide the user through the solution
step by step.
@ -118,19 +106,10 @@ test_chat_structured_output:
type: object
type: json_schema
output: valid_math_reasoning
model:
- Llama-3.3-8B-Instruct
- Llama-3.3-70B-Instruct
- Llama-4-Scout-17B-16E
- Llama-4-Scout-17B-16E-Instruct
- Llama-4-Maverick-17B-128E
- Llama-4-Maverick-17B-128E-Instruct
- gpt-4o
- gpt-4o-mini
test_tool_calling:
test_name: test_tool_calling
test_params:
input_output:
case:
- input:
messages:
- content: You are a helpful assistant that can use tools to get information.
@ -152,11 +131,3 @@ test_tool_calling:
type: object
type: function
output: get_weather_tool_call
model:
- Llama-3.3-70B-Instruct
- Llama-4-Scout-17B-16E
- Llama-4-Scout-17B-16E-Instruct
- Llama-4-Maverick-17B-128E
- Llama-4-Maverick-17B-128E-Instruct
- gpt-4o
- gpt-4o-mini

View file

@ -0,0 +1,271 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from typing import Any
import pytest
from pydantic import BaseModel
from tests.verifications.openai_api.fixtures.fixtures import _load_all_verification_configs
from tests.verifications.openai_api.fixtures.load import load_test_cases
chat_completion_test_cases = load_test_cases("chat_completion")
def case_id_generator(case):
"""Generate a test ID from the case's 'case_id' field, or use a default."""
case_id = case.get("case_id")
if isinstance(case_id, (str, int)):
return re.sub(r"\\W|^(?=\\d)", "_", str(case_id))
return None
def pytest_generate_tests(metafunc):
"""Dynamically parametrize tests based on the selected provider and config."""
if "model" in metafunc.fixturenames:
provider = metafunc.config.getoption("provider")
if not provider:
print("Warning: --provider not specified. Skipping model parametrization.")
metafunc.parametrize("model", [])
return
try:
config_data = _load_all_verification_configs()
except (FileNotFoundError, IOError) as e:
print(f"ERROR loading verification configs: {e}")
config_data = {"providers": {}}
provider_config = config_data.get("providers", {}).get(provider)
if provider_config:
models = provider_config.get("models", [])
if models:
metafunc.parametrize("model", models)
else:
print(f"Warning: No models found for provider '{provider}' in config.")
metafunc.parametrize("model", []) # Parametrize empty if no models found
else:
print(f"Warning: Provider '{provider}' not found in config. No models parametrized.")
metafunc.parametrize("model", []) # Parametrize empty if provider not found
def should_skip_test(verification_config, provider, model, test_name_base):
"""Check if a test should be skipped based on config exclusions."""
provider_config = verification_config.get("providers", {}).get(provider)
if not provider_config:
return False # No config for provider, don't skip
exclusions = provider_config.get("test_exclusions", {}).get(model, [])
return test_name_base in exclusions
# Helper to get the base test name from the request object
def get_base_test_name(request):
return request.node.originalname
# --- Test Functions ---
@pytest.mark.parametrize(
"case",
chat_completion_test_cases["test_chat_basic"]["test_params"]["case"],
ids=case_id_generator,
)
def test_chat_non_streaming_basic(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.chat.completions.create(
model=model,
messages=case["input"]["messages"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert case["output"].lower() in response.choices[0].message.content.lower()
@pytest.mark.parametrize(
"case",
chat_completion_test_cases["test_chat_basic"]["test_params"]["case"],
ids=case_id_generator,
)
def test_chat_streaming_basic(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.chat.completions.create(
model=model,
messages=case["input"]["messages"],
stream=True,
)
content = ""
for chunk in response:
content += chunk.choices[0].delta.content or ""
# TODO: add detailed type validation
assert case["output"].lower() in content.lower()
@pytest.mark.parametrize(
"case",
chat_completion_test_cases["test_chat_image"]["test_params"]["case"],
ids=case_id_generator,
)
def test_chat_non_streaming_image(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.chat.completions.create(
model=model,
messages=case["input"]["messages"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert case["output"].lower() in response.choices[0].message.content.lower()
@pytest.mark.parametrize(
"case",
chat_completion_test_cases["test_chat_image"]["test_params"]["case"],
ids=case_id_generator,
)
def test_chat_streaming_image(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.chat.completions.create(
model=model,
messages=case["input"]["messages"],
stream=True,
)
content = ""
for chunk in response:
content += chunk.choices[0].delta.content or ""
# TODO: add detailed type validation
assert case["output"].lower() in content.lower()
@pytest.mark.parametrize(
"case",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["case"],
ids=case_id_generator,
)
def test_chat_non_streaming_structured_output(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.chat.completions.create(
model=model,
messages=case["input"]["messages"],
response_format=case["input"]["response_format"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
maybe_json_content = response.choices[0].message.content
validate_structured_output(maybe_json_content, case["output"])
@pytest.mark.parametrize(
"case",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["case"],
ids=case_id_generator,
)
def test_chat_streaming_structured_output(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.chat.completions.create(
model=model,
messages=case["input"]["messages"],
response_format=case["input"]["response_format"],
stream=True,
)
maybe_json_content = ""
for chunk in response:
maybe_json_content += chunk.choices[0].delta.content or ""
validate_structured_output(maybe_json_content, case["output"])
@pytest.mark.parametrize(
"case",
chat_completion_test_cases["test_tool_calling"]["test_params"]["case"],
ids=case_id_generator,
)
def test_chat_non_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.chat.completions.create(
model=model,
messages=case["input"]["messages"],
tools=case["input"]["tools"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert len(response.choices[0].message.tool_calls) > 0
assert case["output"] == "get_weather_tool_call"
assert response.choices[0].message.tool_calls[0].function.name == "get_weather"
# TODO: add detailed type validation
# --- Helper functions (structured output validation) ---
def get_structured_output(maybe_json_content: str, schema_name: str) -> Any | None:
if schema_name == "valid_calendar_event":
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
try:
calendar_event = CalendarEvent.model_validate_json(maybe_json_content)
return calendar_event
except Exception:
return None
elif schema_name == "valid_math_reasoning":
class Step(BaseModel):
explanation: str
output: str
class MathReasoning(BaseModel):
steps: list[Step]
final_answer: str
try:
math_reasoning = MathReasoning.model_validate_json(maybe_json_content)
return math_reasoning
except Exception:
return None
return None
def validate_structured_output(maybe_json_content: str, schema_name: str) -> None:
structured_output = get_structured_output(maybe_json_content, schema_name)
assert structured_output is not None
if schema_name == "valid_calendar_event":
assert structured_output.name is not None
assert structured_output.date is not None
assert len(structured_output.participants) == 2
elif schema_name == "valid_math_reasoning":
assert len(structured_output.final_answer) > 0

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,868 @@
{
"created": 1744264338.9923031,
"duration": 32.825536012649536,
"exitcode": 0,
"root": "/Users/erichuang/projects/llama-stack",
"environment": {},
"summary": {
"passed": 22,
"total": 22,
"collected": 22
},
"collectors": [
{
"nodeid": "",
"outcome": "passed",
"result": [
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py",
"type": "Module"
}
]
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py",
"outcome": "passed",
"result": [
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-earth]",
"type": "Function",
"lineno": 72
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-saturn]",
"type": "Function",
"lineno": 72
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-earth]",
"type": "Function",
"lineno": 72
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-saturn]",
"type": "Function",
"lineno": 72
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-earth]",
"type": "Function",
"lineno": 91
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-saturn]",
"type": "Function",
"lineno": 91
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-earth]",
"type": "Function",
"lineno": 91
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-saturn]",
"type": "Function",
"lineno": 91
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-case0]",
"type": "Function",
"lineno": 115
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-mini-case0]",
"type": "Function",
"lineno": 115
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-case0]",
"type": "Function",
"lineno": 134
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-mini-case0]",
"type": "Function",
"lineno": 134
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-calendar]",
"type": "Function",
"lineno": 158
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-math]",
"type": "Function",
"lineno": 158
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-calendar]",
"type": "Function",
"lineno": 158
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-math]",
"type": "Function",
"lineno": 158
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-calendar]",
"type": "Function",
"lineno": 181
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-math]",
"type": "Function",
"lineno": 181
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-calendar]",
"type": "Function",
"lineno": 181
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-math]",
"type": "Function",
"lineno": 181
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-case0]",
"type": "Function",
"lineno": 203
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-mini-case0]",
"type": "Function",
"lineno": 203
}
]
}
],
"tests": [
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-earth]",
"lineno": 72,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_basic[gpt-4o-earth]",
"parametrize",
"pytestmark",
"gpt-4o-earth",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "earth"
},
"setup": {
"duration": 0.05381445901002735,
"outcome": "passed"
},
"call": {
"duration": 0.49848275003023446,
"outcome": "passed"
},
"teardown": {
"duration": 0.00018287496641278267,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-saturn]",
"lineno": 72,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_basic[gpt-4o-saturn]",
"parametrize",
"pytestmark",
"gpt-4o-saturn",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "saturn"
},
"setup": {
"duration": 0.007965500000864267,
"outcome": "passed"
},
"call": {
"duration": 0.9293275829404593,
"outcome": "passed"
},
"teardown": {
"duration": 0.00018229195848107338,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-earth]",
"lineno": 72,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_basic[gpt-4o-mini-earth]",
"parametrize",
"pytestmark",
"gpt-4o-mini-earth",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "earth"
},
"setup": {
"duration": 0.00875679193995893,
"outcome": "passed"
},
"call": {
"duration": 0.5793640419142321,
"outcome": "passed"
},
"teardown": {
"duration": 0.0005307920509949327,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-saturn]",
"lineno": 72,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_basic[gpt-4o-mini-saturn]",
"parametrize",
"pytestmark",
"gpt-4o-mini-saturn",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "saturn"
},
"setup": {
"duration": 0.01076845801435411,
"outcome": "passed"
},
"call": {
"duration": 0.8752291660057381,
"outcome": "passed"
},
"teardown": {
"duration": 0.0004834589781239629,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-earth]",
"lineno": 91,
"outcome": "passed",
"keywords": [
"test_chat_streaming_basic[gpt-4o-earth]",
"parametrize",
"pytestmark",
"gpt-4o-earth",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "earth"
},
"setup": {
"duration": 0.01662245800253004,
"outcome": "passed"
},
"call": {
"duration": 0.8336971249664202,
"outcome": "passed"
},
"teardown": {
"duration": 0.0024086670018732548,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-saturn]",
"lineno": 91,
"outcome": "passed",
"keywords": [
"test_chat_streaming_basic[gpt-4o-saturn]",
"parametrize",
"pytestmark",
"gpt-4o-saturn",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "saturn"
},
"setup": {
"duration": 0.009416291955858469,
"outcome": "passed"
},
"call": {
"duration": 0.43594495789147913,
"outcome": "passed"
},
"teardown": {
"duration": 0.0009131249971687794,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-earth]",
"lineno": 91,
"outcome": "passed",
"keywords": [
"test_chat_streaming_basic[gpt-4o-mini-earth]",
"parametrize",
"pytestmark",
"gpt-4o-mini-earth",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "earth"
},
"setup": {
"duration": 0.013155042077414691,
"outcome": "passed"
},
"call": {
"duration": 0.6119836670113727,
"outcome": "passed"
},
"teardown": {
"duration": 0.00023804197553545237,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-saturn]",
"lineno": 91,
"outcome": "passed",
"keywords": [
"test_chat_streaming_basic[gpt-4o-mini-saturn]",
"parametrize",
"pytestmark",
"gpt-4o-mini-saturn",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "saturn"
},
"setup": {
"duration": 0.009004916995763779,
"outcome": "passed"
},
"call": {
"duration": 0.8327413749648258,
"outcome": "passed"
},
"teardown": {
"duration": 0.00046841695439070463,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-case0]",
"lineno": 115,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_image[gpt-4o-case0]",
"parametrize",
"pytestmark",
"gpt-4o-case0",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "case0"
},
"setup": {
"duration": 0.009574208059348166,
"outcome": "passed"
},
"call": {
"duration": 2.221839000005275,
"outcome": "passed"
},
"teardown": {
"duration": 0.00015945907216519117,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-mini-case0]",
"lineno": 115,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_image[gpt-4o-mini-case0]",
"parametrize",
"pytestmark",
"gpt-4o-mini-case0",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "case0"
},
"setup": {
"duration": 0.0084402080392465,
"outcome": "passed"
},
"call": {
"duration": 2.298736457945779,
"outcome": "passed"
},
"teardown": {
"duration": 0.0002423750702291727,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-case0]",
"lineno": 134,
"outcome": "passed",
"keywords": [
"test_chat_streaming_image[gpt-4o-case0]",
"parametrize",
"pytestmark",
"gpt-4o-case0",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "case0"
},
"setup": {
"duration": 0.007330416003242135,
"outcome": "passed"
},
"call": {
"duration": 4.062959833070636,
"outcome": "passed"
},
"teardown": {
"duration": 0.00015470804646611214,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-mini-case0]",
"lineno": 134,
"outcome": "passed",
"keywords": [
"test_chat_streaming_image[gpt-4o-mini-case0]",
"parametrize",
"pytestmark",
"gpt-4o-mini-case0",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "case0"
},
"setup": {
"duration": 0.019998832955025136,
"outcome": "passed"
},
"call": {
"duration": 2.609432084020227,
"outcome": "passed"
},
"teardown": {
"duration": 0.005618917057290673,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-calendar]",
"lineno": 158,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_structured_output[gpt-4o-calendar]",
"parametrize",
"pytestmark",
"gpt-4o-calendar",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "calendar"
},
"setup": {
"duration": 0.00867662497330457,
"outcome": "passed"
},
"call": {
"duration": 0.6856697499752045,
"outcome": "passed"
},
"teardown": {
"duration": 0.00018445902969688177,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-math]",
"lineno": 158,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_structured_output[gpt-4o-math]",
"parametrize",
"pytestmark",
"gpt-4o-math",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "math"
},
"setup": {
"duration": 0.01139050000347197,
"outcome": "passed"
},
"call": {
"duration": 2.764390083961189,
"outcome": "passed"
},
"teardown": {
"duration": 0.0003164170775562525,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-calendar]",
"lineno": 158,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_structured_output[gpt-4o-mini-calendar]",
"parametrize",
"pytestmark",
"gpt-4o-mini-calendar",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "calendar"
},
"setup": {
"duration": 0.01321374997496605,
"outcome": "passed"
},
"call": {
"duration": 0.8284227909753099,
"outcome": "passed"
},
"teardown": {
"duration": 0.00030170800164341927,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-math]",
"lineno": 158,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_structured_output[gpt-4o-mini-math]",
"parametrize",
"pytestmark",
"gpt-4o-mini-math",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "math"
},
"setup": {
"duration": 0.013477458036504686,
"outcome": "passed"
},
"call": {
"duration": 2.4146235829684883,
"outcome": "passed"
},
"teardown": {
"duration": 0.00025754200760275126,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-calendar]",
"lineno": 181,
"outcome": "passed",
"keywords": [
"test_chat_streaming_structured_output[gpt-4o-calendar]",
"parametrize",
"pytestmark",
"gpt-4o-calendar",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "calendar"
},
"setup": {
"duration": 0.006940583931282163,
"outcome": "passed"
},
"call": {
"duration": 0.5102092920569703,
"outcome": "passed"
},
"teardown": {
"duration": 0.00023379107005894184,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-math]",
"lineno": 181,
"outcome": "passed",
"keywords": [
"test_chat_streaming_structured_output[gpt-4o-math]",
"parametrize",
"pytestmark",
"gpt-4o-math",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "math"
},
"setup": {
"duration": 0.007166999974288046,
"outcome": "passed"
},
"call": {
"duration": 3.5751801669830456,
"outcome": "passed"
},
"teardown": {
"duration": 0.00015041697770357132,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-calendar]",
"lineno": 181,
"outcome": "passed",
"keywords": [
"test_chat_streaming_structured_output[gpt-4o-mini-calendar]",
"parametrize",
"pytestmark",
"gpt-4o-mini-calendar",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "calendar"
},
"setup": {
"duration": 0.010652625001966953,
"outcome": "passed"
},
"call": {
"duration": 0.6648182499920949,
"outcome": "passed"
},
"teardown": {
"duration": 0.0008647920330986381,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-math]",
"lineno": 181,
"outcome": "passed",
"keywords": [
"test_chat_streaming_structured_output[gpt-4o-mini-math]",
"parametrize",
"pytestmark",
"gpt-4o-mini-math",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "math"
},
"setup": {
"duration": 0.007372208056040108,
"outcome": "passed"
},
"call": {
"duration": 2.80747462506406,
"outcome": "passed"
},
"teardown": {
"duration": 0.00028124998789280653,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-case0]",
"lineno": 203,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_tool_calling[gpt-4o-case0]",
"parametrize",
"pytestmark",
"gpt-4o-case0",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o",
"case_id": "case0"
},
"setup": {
"duration": 0.01625587500166148,
"outcome": "passed"
},
"call": {
"duration": 0.6878769160248339,
"outcome": "passed"
},
"teardown": {
"duration": 0.0002637499710544944,
"outcome": "passed"
}
},
{
"nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-mini-case0]",
"lineno": 203,
"outcome": "passed",
"keywords": [
"test_chat_non_streaming_tool_calling[gpt-4o-mini-case0]",
"parametrize",
"pytestmark",
"gpt-4o-mini-case0",
"test_chat_completion.py",
"openai_api",
"verifications",
"tests",
"llama-stack",
""
],
"metadata": {
"model": "gpt-4o-mini",
"case_id": "case0"
},
"setup": {
"duration": 0.008817250025458634,
"outcome": "passed"
},
"call": {
"duration": 0.7181202919455245,
"outcome": "passed"
},
"teardown": {
"duration": 0.0017147079342976213,
"outcome": "passed"
}
}
]
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff