feat(client): migrate MilvusClient to AsyncMilvusClient

The commit makes the follwing changes.
-  Import statements updated: MilvusClient → AsyncMilvusClient
-  Removed asyncio.to_thread() wrappers: All Milvus operations now use native async/await
-  Test compatibility: Mock objects and fixtures updated to work with AsyncMilvusClient

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
This commit is contained in:
Mustafa Elbehery 2025-09-08 17:19:42 +02:00
parent 0e27016cf2
commit 142bd248e7
4 changed files with 76 additions and 66 deletions

View file

@ -10,7 +10,7 @@ from unittest.mock import AsyncMock, MagicMock, patch
import numpy as np
import pytest
from chromadb import PersistentClient
from pymilvus import MilvusClient, connections
from pymilvus import AsyncMilvusClient, connections
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
@ -139,7 +139,7 @@ async def sqlite_vec_vec_index(embedding_dimension, tmp_path_factory):
await index.initialize()
index.db_path = db_path
yield index
index.delete()
await index.delete()
@pytest.fixture
@ -176,12 +176,14 @@ def milvus_vec_db_path(tmp_path_factory):
@pytest.fixture
async def milvus_vec_index(milvus_vec_db_path, embedding_dimension):
client = MilvusClient(milvus_vec_db_path)
client = AsyncMilvusClient(milvus_vec_db_path)
name = f"{COLLECTION_PREFIX}_{np.random.randint(1e6)}"
connections.connect(alias=MILVUS_ALIAS, uri=milvus_vec_db_path)
index = MilvusIndex(client, name, consistency_level="Strong")
index.db_path = milvus_vec_db_path
yield index
# Proper cleanup: close the async client
await client.close()
@pytest.fixture

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import MagicMock, patch
from unittest.mock import AsyncMock, MagicMock, patch
import numpy as np
import pytest
@ -14,7 +14,7 @@ from llama_stack.apis.vector_io import QueryChunksResponse
# Mock the entire pymilvus module
pymilvus_mock = MagicMock()
pymilvus_mock.DataType = MagicMock()
pymilvus_mock.MilvusClient = MagicMock
pymilvus_mock.AsyncMilvusClient = MagicMock
pymilvus_mock.RRFRanker = MagicMock
pymilvus_mock.WeightedRanker = MagicMock
pymilvus_mock.AnnSearchRequest = MagicMock
@ -40,48 +40,61 @@ async def mock_milvus_client() -> MagicMock:
"""Create a mock Milvus client with common method behaviors."""
client = MagicMock()
# Mock collection operations
client.has_collection.return_value = False # Initially no collection
client.create_collection.return_value = None
client.drop_collection.return_value = None
# Mock async collection operations
client.has_collection = AsyncMock(return_value=False) # Initially no collection
client.create_collection = AsyncMock(return_value=None)
client.drop_collection = AsyncMock(return_value=None)
# Mock insert operation
client.insert.return_value = {"insert_count": 10}
# Mock async insert operation
client.insert = AsyncMock(return_value={"insert_count": 10})
# Mock search operation - return mock results (data should be dict, not JSON string)
client.search.return_value = [
[
# Mock async search operation - return mock results (data should be dict, not JSON string)
client.search = AsyncMock(
return_value=[
[
{
"id": 0,
"distance": 0.1,
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
},
{
"id": 1,
"distance": 0.2,
"entity": {"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}}},
},
]
]
)
# Mock async query operation for keyword search (data should be dict, not JSON string)
client.query = AsyncMock(
return_value=[
{
"id": 0,
"distance": 0.1,
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
"chunk_id": "chunk1",
"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}},
"score": 0.9,
},
{
"id": 1,
"distance": 0.2,
"entity": {"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}}},
"chunk_id": "chunk2",
"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}},
"score": 0.8,
},
{
"chunk_id": "chunk3",
"chunk_content": {"content": "mock chunk 3", "metadata": {"document_id": "doc3"}},
"score": 0.7,
},
]
]
)
# Mock query operation for keyword search (data should be dict, not JSON string)
client.query.return_value = [
{
"chunk_id": "chunk1",
"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}},
"score": 0.9,
},
{
"chunk_id": "chunk2",
"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}},
"score": 0.8,
},
{
"chunk_id": "chunk3",
"chunk_content": {"content": "mock chunk 3", "metadata": {"document_id": "doc3"}},
"score": 0.7,
},
]
# Mock async hybrid_search operation
client.hybrid_search = AsyncMock(return_value=[])
# Mock async delete operation
client.delete = AsyncMock(return_value=None)
# Mock async close operation
client.close = AsyncMock(return_value=None)
return client

View file

@ -30,12 +30,12 @@ async def test_initialize_index(vector_index):
async def test_add_chunks_query_vector(vector_index, sample_chunks, sample_embeddings):
vector_index.delete()
vector_index.initialize()
await vector_index.delete()
await vector_index.initialize()
await vector_index.add_chunks(sample_chunks, sample_embeddings)
resp = await vector_index.query_vector(sample_embeddings[0], k=1, score_threshold=-1)
assert resp.chunks[0].content == sample_chunks[0].content
vector_index.delete()
await vector_index.delete()
async def test_chunk_id_conflict(vector_index, sample_chunks, embedding_dimension):