mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
docs: Add Files API and Vector Store integration documentation
- Add comprehensive Files API documentation with OpenAI-compatible endpoints - Create file operations and vector store integration guide - Add vector store provider docs for FAISS, SQLite-vec, Milvus, ChromaDB, Qdrant, Weaviate, PGVector - Support for release 0.2.14 FileResponse and Vector Store API features - Refactor documentation to focus on OpenAI APIs as primary interface - Remove redundant 'OpenAI-compatible' qualifiers throughout docs - Rename openai_file_operations_vector_stores.md to file_operations_vector_stores.md - Update cross-references and documentation structure
This commit is contained in:
parent
f7c5ef4ec0
commit
14c21aec67
6 changed files with 1248 additions and 2 deletions
|
@ -7,7 +7,7 @@ sidebar_position: 1
|
|||
|
||||
# APIs
|
||||
|
||||
A Llama Stack API is described as a collection of REST endpoints. We currently support the following APIs:
|
||||
A Llama Stack API is described as a collection of REST endpoints following OpenAI API standards. We currently support the following APIs:
|
||||
|
||||
- **Inference**: run inference with a LLM
|
||||
- **Safety**: apply safety policies to the output at a Systems (not only model) level
|
||||
|
@ -16,13 +16,27 @@ A Llama Stack API is described as a collection of REST endpoints. We currently s
|
|||
- **Scoring**: evaluate outputs of the system
|
||||
- **Eval**: generate outputs (via Inference or Agents) and perform scoring
|
||||
- **VectorIO**: perform operations on vector stores, such as adding documents, searching, and deleting documents
|
||||
- **Files**: manage file uploads, storage, and retrieval
|
||||
- **Telemetry**: collect telemetry data from the system
|
||||
- **Post Training**: fine-tune a model
|
||||
- **Tool Runtime**: interact with various tools and protocols
|
||||
- **Responses**: generate responses from an LLM using this OpenAI compatible API.
|
||||
- **Responses**: generate responses from an LLM
|
||||
|
||||
We are working on adding a few more APIs to complete the application lifecycle. These will include:
|
||||
- **Batch Inference**: run inference on a dataset of inputs
|
||||
- **Batch Agents**: run agents on a dataset of inputs
|
||||
- **Synthetic Data Generation**: generate synthetic data for model development
|
||||
- **Batches**: OpenAI-compatible batch management for inference
|
||||
|
||||
|
||||
## OpenAI API Compatibility
|
||||
We are working on adding OpenAI API compatibility to Llama Stack. This will allow you to use Llama Stack with OpenAI API clients and tools.
|
||||
|
||||
### File Operations and Vector Store Integration
|
||||
|
||||
The Files API and Vector Store APIs work together through file operations, enabling automatic document processing and search. This integration implements the [OpenAI Vector Store Files API specification](https://platform.openai.com/docs/api-reference/vector-stores-files) and allows you to:
|
||||
- Upload documents through the Files API
|
||||
- Automatically process and chunk documents into searchable vectors
|
||||
- Store processed content in vector databases based on the availability of [our providers](../../providers/index.mdx)
|
||||
- Search through documents using natural language queries
|
||||
For detailed information about this integration, see [File Operations and Vector Store Integration](../file_operations_vector_stores.md).
|
||||
|
|
423
docs/docs/concepts/file_operations_vector_stores.md
Normal file
423
docs/docs/concepts/file_operations_vector_stores.md
Normal file
|
@ -0,0 +1,423 @@
|
|||
# File Operations and Vector Store Integration
|
||||
|
||||
## Overview
|
||||
|
||||
Llama Stack provides seamless integration between the Files API and Vector Store APIs, enabling you to upload documents and automatically process them into searchable vector embeddings. This integration implements file operations following the [OpenAI Vector Store Files API specification](https://platform.openai.com/docs/api-reference/vector-stores-files).
|
||||
|
||||
## Enhanced Capabilities Beyond OpenAI
|
||||
|
||||
While Llama Stack maintains full compatibility with OpenAI's Vector Store API, it provides several additional capabilities that enhance functionality and flexibility:
|
||||
|
||||
### **Embedding Model Specification**
|
||||
Unlike OpenAI's vector stores which use a fixed embedding model, Llama Stack allows you to specify which embedding model to use when creating a vector store:
|
||||
|
||||
```python
|
||||
# Create vector store with specific embedding model
|
||||
vector_store = client.vector_stores.create(
|
||||
name="my_documents",
|
||||
embedding_model="all-MiniLM-L6-v2", # Specify your preferred model
|
||||
embedding_dimension=384,
|
||||
)
|
||||
```
|
||||
|
||||
### **Advanced Search Modes**
|
||||
Llama Stack supports multiple search modes beyond basic vector similarity:
|
||||
|
||||
- **Vector Search**: Pure semantic similarity search using embeddings
|
||||
- **Keyword Search**: Traditional keyword-based search for exact matches
|
||||
- **Hybrid Search**: Combines both vector and keyword search for optimal results
|
||||
|
||||
```python
|
||||
# Different search modes
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query="machine learning algorithms",
|
||||
search_mode="hybrid", # or "vector", "keyword"
|
||||
max_num_results=5,
|
||||
)
|
||||
```
|
||||
|
||||
### **Flexible Ranking Options**
|
||||
For hybrid search, Llama Stack offers configurable ranking strategies:
|
||||
|
||||
- **RRF (Reciprocal Rank Fusion)**: Combines rankings with configurable impact factor
|
||||
- **Weighted Ranker**: Linear combination of vector and keyword scores with adjustable weights
|
||||
|
||||
```python
|
||||
# Custom ranking configuration
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query="neural networks",
|
||||
search_mode="hybrid",
|
||||
ranking_options={
|
||||
"ranker": {"type": "weighted", "alpha": 0.7} # 70% vector, 30% keyword
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
### **Provider Selection**
|
||||
Choose from multiple vector store providers based on your specific needs:
|
||||
|
||||
- **Inline Providers**: FAISS (fast in-memory), SQLite-vec (disk-based), Milvus (high-performance)
|
||||
- **Remote Providers**: ChromaDB, Qdrant, Weaviate, Postgres (PGVector), Milvus
|
||||
|
||||
```python
|
||||
# Specify provider when creating vector store
|
||||
vector_store = client.vector_stores.create(
|
||||
name="my_documents", provider_id="sqlite-vec" # Choose your preferred provider
|
||||
)
|
||||
```
|
||||
|
||||
## How It Works
|
||||
|
||||
The file operations work through several key components:
|
||||
|
||||
1. **File Upload**: Documents are uploaded through the Files API
|
||||
2. **Automatic Processing**: Files are automatically chunked and converted to embeddings
|
||||
3. **Vector Storage**: Chunks are stored in vector databases with metadata
|
||||
4. **Search & Retrieval**: Users can search through processed documents using natural language
|
||||
|
||||
## Supported Vector Store Providers
|
||||
|
||||
The following vector store providers support file operations:
|
||||
|
||||
### Inline Providers (Single Node)
|
||||
|
||||
- **FAISS**: Fast in-memory vector similarity search
|
||||
- **SQLite-vec**: Disk-based storage with hybrid search capabilities
|
||||
- **Milvus**: High-performance vector database with advanced indexing
|
||||
|
||||
### Remote Providers (Hosted)
|
||||
|
||||
- **ChromaDB**: Vector database with metadata filtering
|
||||
- **Qdrant**: Vector similarity search with payload filtering
|
||||
- **Weaviate**: Vector database with GraphQL interface
|
||||
- **Postgres (PGVector)**: Vector extensions for PostgreSQL
|
||||
|
||||
## File Processing Pipeline
|
||||
|
||||
### 1. File Upload
|
||||
|
||||
```python
|
||||
from llama_stack import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient("http://localhost:8000")
|
||||
|
||||
# Upload a document
|
||||
with open("document.pdf", "rb") as f:
|
||||
file_info = await client.files.upload(file=f, purpose="assistants")
|
||||
```
|
||||
|
||||
### 2. Attach to Vector Store
|
||||
|
||||
```python
|
||||
# Create a vector store
|
||||
vector_store = client.vector_stores.create(name="my_documents")
|
||||
|
||||
# Attach the file to the vector store
|
||||
file_attach_response = await client.vector_stores.files.create(
|
||||
vector_store_id=vector_store.id, file_id=file_info.id
|
||||
)
|
||||
```
|
||||
|
||||
### 3. Automatic Processing
|
||||
|
||||
The system automatically:
|
||||
- Detects the file type and extracts text content
|
||||
- Splits content into chunks (default: 800 tokens with 400 token overlap)
|
||||
- Generates embeddings for each chunk
|
||||
- Stores chunks with metadata in the vector store
|
||||
- Updates file status to "completed"
|
||||
|
||||
### 4. Search and Retrieval
|
||||
|
||||
```python
|
||||
# Search through processed documents
|
||||
search_results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query="What is the main topic discussed?",
|
||||
max_num_results=5,
|
||||
)
|
||||
|
||||
# Process results
|
||||
for result in search_results.data:
|
||||
print(f"Score: {result.score}")
|
||||
for content in result.content:
|
||||
print(f"Content: {content.text}")
|
||||
```
|
||||
|
||||
## Supported File Types
|
||||
|
||||
The FileResponse system supports various document formats:
|
||||
|
||||
- **Text Files**: `.txt`, `.md`, `.rst`
|
||||
- **Documents**: `.pdf`, `.docx`, `.doc`
|
||||
- **Code**: `.py`, `.js`, `.java`, `.cpp`, etc.
|
||||
- **Data**: `.json`, `.csv`, `.xml`
|
||||
- **Web Content**: HTML files
|
||||
|
||||
## Chunking Strategies
|
||||
|
||||
### Default Strategy
|
||||
|
||||
The default chunking strategy uses:
|
||||
- **Max Chunk Size**: 800 tokens
|
||||
- **Overlap**: 400 tokens
|
||||
- **Method**: Semantic boundary detection
|
||||
|
||||
### Custom Chunking
|
||||
|
||||
You can customize chunking when attaching files:
|
||||
|
||||
```python
|
||||
from llama_stack.apis.vector_io import VectorStoreChunkingStrategy
|
||||
|
||||
# Custom chunking strategy
|
||||
chunking_strategy = VectorStoreChunkingStrategy(
|
||||
type="custom", max_chunk_size_tokens=1000, chunk_overlap_tokens=200
|
||||
)
|
||||
|
||||
# Attach file with custom chunking
|
||||
file_attach_response = await client.vector_stores.files.create(
|
||||
vector_store_id=vector_store.id,
|
||||
file_id=file_info.id,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
```
|
||||
|
||||
**Note**: While Llama Stack is OpenAI-compatible, it also supports additional options beyond the standard OpenAI API. When creating vector stores, you can specify custom embedding models and embedding dimensions that will be used when processing chunks from attached files.
|
||||
|
||||
|
||||
## File Management
|
||||
|
||||
### List Files in Vector Store
|
||||
|
||||
```python
|
||||
# List all files in a vector store
|
||||
files = await client.vector_stores.files.list(vector_store_id=vector_store.id)
|
||||
|
||||
for file in files:
|
||||
print(f"File: {file.filename}, Status: {file.status}")
|
||||
```
|
||||
|
||||
### File Status Tracking
|
||||
|
||||
Files go through several statuses:
|
||||
- **in_progress**: File is being processed
|
||||
- **completed**: File successfully processed and searchable
|
||||
- **failed**: Processing failed (check `last_error` for details)
|
||||
- **cancelled**: Processing was cancelled
|
||||
|
||||
### Retrieve File Content
|
||||
|
||||
```python
|
||||
# Get chunked content from vector store
|
||||
content_response = await client.vector_stores.files.retrieve_content(
|
||||
vector_store_id=vector_store.id, file_id=file_info.id
|
||||
)
|
||||
|
||||
for chunk in content_response.content:
|
||||
print(f"Chunk {chunk.metadata.get('chunk_index', 0)}: {chunk.text}")
|
||||
```
|
||||
|
||||
## Vector Store Management
|
||||
|
||||
### List Vector Stores
|
||||
|
||||
Retrieve a paginated list of all vector stores:
|
||||
|
||||
```python
|
||||
# List all vector stores with default pagination
|
||||
vector_stores = await client.vector_stores.list()
|
||||
|
||||
# Custom pagination and ordering
|
||||
vector_stores = await client.vector_stores.list(
|
||||
limit=10,
|
||||
order="asc", # or "desc"
|
||||
after="vs_12345678", # cursor-based pagination
|
||||
)
|
||||
|
||||
for store in vector_stores.data:
|
||||
print(f"Store: {store.name}, Files: {store.file_counts.total}")
|
||||
print(f"Created: {store.created_at}, Status: {store.status}")
|
||||
```
|
||||
|
||||
### Retrieve Vector Store Details
|
||||
|
||||
Get detailed information about a specific vector store:
|
||||
|
||||
```python
|
||||
# Get vector store details
|
||||
store_details = await client.vector_stores.retrieve(vector_store_id="vs_12345678")
|
||||
|
||||
print(f"Name: {store_details.name}")
|
||||
print(f"Status: {store_details.status}")
|
||||
print(f"File Counts: {store_details.file_counts}")
|
||||
print(f"Usage: {store_details.usage_bytes} bytes")
|
||||
print(f"Created: {store_details.created_at}")
|
||||
print(f"Metadata: {store_details.metadata}")
|
||||
```
|
||||
|
||||
### Update Vector Store
|
||||
|
||||
Modify vector store properties such as name, metadata, or expiration settings:
|
||||
|
||||
```python
|
||||
# Update vector store name and metadata
|
||||
updated_store = await client.vector_stores.update(
|
||||
vector_store_id="vs_12345678",
|
||||
name="Updated Document Collection",
|
||||
metadata={
|
||||
"description": "Updated collection for research",
|
||||
"category": "research",
|
||||
"version": "2.0",
|
||||
},
|
||||
)
|
||||
|
||||
# Set expiration policy
|
||||
expired_store = await client.vector_stores.update(
|
||||
vector_store_id="vs_12345678",
|
||||
expires_after={"anchor": "last_active_at", "days": 30},
|
||||
)
|
||||
|
||||
print(f"Updated store: {updated_store.name}")
|
||||
print(f"Last active: {updated_store.last_active_at}")
|
||||
```
|
||||
|
||||
### Delete Vector Store
|
||||
|
||||
Remove a vector store and all its associated data:
|
||||
|
||||
```python
|
||||
# Delete a vector store
|
||||
delete_response = await client.vector_stores.delete(vector_store_id="vs_12345678")
|
||||
|
||||
if delete_response.deleted:
|
||||
print(f"Vector store {delete_response.id} successfully deleted")
|
||||
else:
|
||||
print("Failed to delete vector store")
|
||||
```
|
||||
|
||||
**Important Notes:**
|
||||
- Deleting a vector store removes all files, chunks, and embeddings
|
||||
- This operation cannot be undone
|
||||
- The underlying vector database is also cleaned up
|
||||
- Consider backing up important data before deletion
|
||||
|
||||
## Search Capabilities
|
||||
|
||||
### Vector Search
|
||||
|
||||
Pure similarity search using embeddings:
|
||||
|
||||
```python
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query="machine learning algorithms",
|
||||
max_num_results=10,
|
||||
)
|
||||
```
|
||||
|
||||
### Filtered Search
|
||||
|
||||
Combine vector search with metadata filtering:
|
||||
|
||||
```python
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store.id,
|
||||
query="machine learning algorithms",
|
||||
filters={"file_type": "pdf", "upload_date": "2024-01-01"},
|
||||
max_num_results=10,
|
||||
)
|
||||
```
|
||||
|
||||
### Hybrid Search
|
||||
|
||||
[SQLite-vec](../providers/vector_io/inline_sqlite-vec.md), [pgvector](../providers/vector_io/remote_pgvector.md), and [Milvus](../providers/vector_io/inline_milvus.md) support combining vector and keyword search.
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
> **Note**: For detailed performance optimization strategies, see [Performance Considerations](../providers/files/openai_file_operations_support.md#performance-considerations) in the provider documentation.
|
||||
|
||||
**Key Points:**
|
||||
- **Chunk Size**: 400-600 tokens for precision, 800-1200 for context
|
||||
- **Storage**: Choose provider based on your performance needs
|
||||
- **Search**: Optimize for your specific use case
|
||||
|
||||
## Error Handling
|
||||
|
||||
> **Note**: For comprehensive troubleshooting and error handling, see [Troubleshooting](../providers/files/openai_file_operations_support.md#troubleshooting) in the provider documentation.
|
||||
|
||||
**Common Issues:**
|
||||
- File processing failures (format, size limits)
|
||||
- Search performance optimization
|
||||
- Storage and memory issues
|
||||
|
||||
## Best Practices
|
||||
|
||||
> **Note**: For detailed best practices and recommendations, see [Best Practices](../providers/files/openai_file_operations_support.md#best-practices) in the provider documentation.
|
||||
|
||||
**Key Recommendations:**
|
||||
- File organization and naming conventions
|
||||
- Chunking strategy optimization
|
||||
- Metadata and monitoring practices
|
||||
- Regular cleanup and maintenance
|
||||
|
||||
## Integration Examples
|
||||
|
||||
### RAG Application
|
||||
|
||||
```python
|
||||
# Build a RAG system with file uploads
|
||||
async def build_rag_system():
|
||||
# Create vector store
|
||||
vector_store = client.vector_stores.create(name="knowledge_base")
|
||||
|
||||
# Upload and process documents
|
||||
documents = ["doc1.pdf", "doc2.pdf", "doc3.pdf"]
|
||||
for doc in documents:
|
||||
with open(doc, "rb") as f:
|
||||
file_info = await client.files.create(file=f, purpose="assistants")
|
||||
await client.vector_stores.files.create(
|
||||
vector_store_id=vector_store.id, file_id=file_info.id
|
||||
)
|
||||
|
||||
return vector_store
|
||||
|
||||
|
||||
# Query the RAG system
|
||||
async def query_rag(vector_store_id, question):
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store_id, query=question, max_num_results=5
|
||||
)
|
||||
return results
|
||||
```
|
||||
|
||||
### Document Analysis
|
||||
|
||||
```python
|
||||
# Analyze document content through vector search
|
||||
async def analyze_document(vector_store_id, file_id):
|
||||
# Get document content
|
||||
content = await client.vector_stores.files.retrieve_content(
|
||||
vector_store_id=vector_store_id, file_id=file_id
|
||||
)
|
||||
|
||||
# Search for specific topics
|
||||
topics = ["introduction", "methodology", "conclusion"]
|
||||
analysis = {}
|
||||
|
||||
for topic in topics:
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store_id, query=topic, max_num_results=3
|
||||
)
|
||||
analysis[topic] = results.data
|
||||
|
||||
return analysis
|
||||
```
|
||||
|
||||
## Next Steps
|
||||
|
||||
- Explore the [Files API documentation](../apis/files.md) for detailed API reference
|
||||
- Check [Vector Store Providers](../providers/vector_io/index.md) for specific implementation details
|
||||
- Review [Getting Started](../getting_started/index.md) for quick setup instructions
|
287
docs/docs/providers/files/files_api.md
Normal file
287
docs/docs/providers/files/files_api.md
Normal file
|
@ -0,0 +1,287 @@
|
|||
# Files API
|
||||
|
||||
## Overview
|
||||
|
||||
The Files API provides file management capabilities for Llama Stack. It allows you to upload, store, retrieve, and manage files that can be used across various endpoints in your application.
|
||||
|
||||
## Features
|
||||
|
||||
- **File Upload**: Upload files with metadata and purpose classification
|
||||
- **File Management**: List, retrieve, and delete files
|
||||
- **Content Retrieval**: Access raw file content for processing
|
||||
- **API Compatibility**: Full compatibility with OpenAI Files API endpoints
|
||||
- **Flexible Storage**: Support for local filesystem and cloud storage backends
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### Upload File
|
||||
|
||||
**POST** `/v1/openai/v1/files`
|
||||
|
||||
Upload a file that can be used across various endpoints.
|
||||
|
||||
**Request Body:**
|
||||
- `file`: The file object to be uploaded (multipart form data)
|
||||
- `purpose`: The intended purpose of the uploaded file
|
||||
|
||||
**Supported Purposes:**
|
||||
- `batch`: Files for batch operations
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"id": "file-abc123",
|
||||
"object": "file",
|
||||
"bytes": 140,
|
||||
"created_at": 1613779121,
|
||||
"filename": "mydata.jsonl",
|
||||
"purpose": "batch"
|
||||
}
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
with open("data.jsonl", "rb") as f:
|
||||
files = {"file": f}
|
||||
data = {"purpose": "batch"}
|
||||
response = requests.post(
|
||||
"http://localhost:8000/v1/openai/v1/files", files=files, data=data
|
||||
)
|
||||
file_info = response.json()
|
||||
```
|
||||
|
||||
### List Files
|
||||
|
||||
**GET** `/v1/openai/v1/files`
|
||||
|
||||
Returns a list of files that belong to the user's organization.
|
||||
|
||||
**Query Parameters:**
|
||||
- `after` (optional): A cursor for pagination
|
||||
- `limit` (optional): Limit on number of objects (1-10,000, default: 10,000)
|
||||
- `order` (optional): Sort order by created_at timestamp (`asc` or `desc`, default: `desc`)
|
||||
- `purpose` (optional): Filter files by purpose
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": "file-abc123",
|
||||
"object": "file",
|
||||
"bytes": 140,
|
||||
"created_at": 1613779121,
|
||||
"filename": "mydata.jsonl",
|
||||
"purpose": "fine-tune"
|
||||
}
|
||||
],
|
||||
"has_more": false
|
||||
}
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
# List all files
|
||||
response = requests.get("http://localhost:8000/v1/openai/v1/files")
|
||||
files = response.json()
|
||||
|
||||
# List files with pagination
|
||||
response = requests.get(
|
||||
"http://localhost:8000/v1/openai/v1/files",
|
||||
params={"limit": 10, "after": "file-abc123"},
|
||||
)
|
||||
files = response.json()
|
||||
|
||||
# Filter by purpose
|
||||
response = requests.get(
|
||||
"http://localhost:8000/v1/openai/v1/files", params={"purpose": "fine-tune"}
|
||||
)
|
||||
files = response.json()
|
||||
```
|
||||
|
||||
### Retrieve File
|
||||
|
||||
**GET** `/v1/openai/v1/files/{file_id}`
|
||||
|
||||
Returns information about a specific file.
|
||||
|
||||
**Path Parameters:**
|
||||
- `file_id`: The ID of the file to retrieve
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"id": "file-abc123",
|
||||
"object": "file",
|
||||
"bytes": 140,
|
||||
"created_at": 1613779121,
|
||||
"filename": "mydata.jsonl",
|
||||
"purpose": "fine-tune"
|
||||
}
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
file_id = "file-abc123"
|
||||
response = requests.get(f"http://localhost:8000/v1/openai/v1/files/{file_id}")
|
||||
file_info = response.json()
|
||||
```
|
||||
|
||||
### Delete File
|
||||
|
||||
**DELETE** `/v1/openai/v1/files/{file_id}`
|
||||
|
||||
Delete a file.
|
||||
|
||||
**Path Parameters:**
|
||||
- `file_id`: The ID of the file to delete
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"id": "file-abc123",
|
||||
"object": "file",
|
||||
"deleted": true
|
||||
}
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
file_id = "file-abc123"
|
||||
response = requests.delete(f"http://localhost:8000/v1/openai/v1/files/{file_id}")
|
||||
result = response.json()
|
||||
```
|
||||
|
||||
### Retrieve File Content
|
||||
|
||||
**GET** `/v1/openai/v1/files/{file_id}/content`
|
||||
|
||||
Returns the raw file content as a binary response.
|
||||
|
||||
**Path Parameters:**
|
||||
- `file_id`: The ID of the file to retrieve content from
|
||||
|
||||
**Response:**
|
||||
Binary file content with appropriate headers:
|
||||
- `Content-Type`: `application/octet-stream`
|
||||
- `Content-Disposition`: `attachment; filename="filename"`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
file_id = "file-abc123"
|
||||
response = requests.get(f"http://localhost:8000/v1/openai/v1/files/{file_id}/content")
|
||||
|
||||
# Save content to file
|
||||
with open("downloaded_file.jsonl", "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
# Or process content directly
|
||||
content = response.content
|
||||
```
|
||||
|
||||
## Vector Store Integration
|
||||
|
||||
The Files API integrates with Vector Stores to enable document processing and search. For detailed information about this integration, see [File Operations and Vector Store Integration](../concepts/file_operations_vector_stores.md).
|
||||
|
||||
### Vector Store File Operations
|
||||
|
||||
**List Vector Store Files:**
|
||||
- **GET** `/v1/openai/v1/vector_stores/{vector_store_id}/files`
|
||||
|
||||
**Retrieve Vector Store File Content:**
|
||||
- **GET** `/v1/openai/v1/vector_stores/{vector_store_id}/files/{file_id}/content`
|
||||
|
||||
**Attach File to Vector Store:**
|
||||
- **POST** `/v1/openai/v1/vector_stores/{vector_store_id}/files`
|
||||
|
||||
## Error Handling
|
||||
|
||||
The Files API returns standard HTTP status codes and error responses:
|
||||
|
||||
- `400 Bad Request`: Invalid request parameters
|
||||
- `404 Not Found`: File not found
|
||||
- `429 Too Many Requests`: Rate limit exceeded
|
||||
- `500 Internal Server Error`: Server error
|
||||
|
||||
**Error Response Format:**
|
||||
```json
|
||||
{
|
||||
"error": {
|
||||
"message": "Error description",
|
||||
"type": "invalid_request_error",
|
||||
"code": "file_not_found"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Rate Limits
|
||||
|
||||
The Files API implements rate limiting to ensure fair usage:
|
||||
- File uploads: 100 files per minute
|
||||
- File retrievals: 1000 requests per minute
|
||||
- File deletions: 100 requests per minute
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **File Organization**: Use descriptive filenames and appropriate purpose classifications
|
||||
2. **Batch Operations**: For multiple files, consider using batch endpoints when available
|
||||
3. **Error Handling**: Always check response status codes and handle errors gracefully
|
||||
4. **Content Types**: Ensure files are uploaded with appropriate content types
|
||||
5. **Cleanup**: Regularly delete unused files to manage storage costs
|
||||
|
||||
## Integration Examples
|
||||
|
||||
### With Python Client
|
||||
|
||||
```python
|
||||
from llama_stack import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient("http://localhost:8000")
|
||||
|
||||
# Upload a file
|
||||
with open("data.jsonl", "rb") as f:
|
||||
file_info = await client.files.upload(file=f, purpose="fine-tune")
|
||||
|
||||
# List files
|
||||
files = await client.files.list(purpose="fine-tune")
|
||||
|
||||
# Retrieve file content
|
||||
content = await client.files.retrieve_content(file_info.id)
|
||||
```
|
||||
|
||||
### With cURL
|
||||
|
||||
```bash
|
||||
# Upload file
|
||||
curl -X POST http://localhost:8000/v1/openai/v1/files \
|
||||
-F "file=@data.jsonl" \
|
||||
-F "purpose=fine-tune"
|
||||
|
||||
# List files
|
||||
curl http://localhost:8000/v1/openai/v1/files
|
||||
|
||||
# Download file content
|
||||
curl http://localhost:8000/v1/openai/v1/files/file-abc123/content \
|
||||
-o downloaded_file.jsonl
|
||||
```
|
||||
|
||||
## Provider Support
|
||||
|
||||
The Files API supports multiple storage backends:
|
||||
|
||||
- **Local Filesystem**: Store files on local disk (inline provider)
|
||||
- **S3**: Store files in AWS S3 or S3-compatible services (remote provider)
|
||||
- **Custom Backends**: Extensible architecture for custom storage providers
|
||||
|
||||
See the [Files Providers](index.md) documentation for detailed configuration options.
|
|
@ -0,0 +1,80 @@
|
|||
# File Operations Quick Reference
|
||||
|
||||
## Overview
|
||||
|
||||
As of release 0.2.14, Llama Stack provides comprehensive file operations and Vector Store API integration, following the [OpenAI Vector Store Files API specification](https://platform.openai.com/docs/api-reference/vector-stores-files).
|
||||
|
||||
> **Note**: For detailed overview and implementation details, see [Overview](../openai_file_operations_support.md#overview) in the full documentation.
|
||||
|
||||
## Supported Providers
|
||||
|
||||
> **Note**: For complete provider details and features, see [Supported Providers](../openai_file_operations_support.md#supported-providers) in the full documentation.
|
||||
|
||||
**Inline Providers**: FAISS, SQLite-vec, Milvus
|
||||
**Remote Providers**: ChromaDB, Qdrant, Weaviate, PGVector
|
||||
|
||||
## Quick Start
|
||||
|
||||
### 1. Upload File
|
||||
```python
|
||||
file_info = await client.files.upload(
|
||||
file=open("document.pdf", "rb"), purpose="assistants"
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Create Vector Store
|
||||
```python
|
||||
vector_store = client.vector_stores.create(name="my_docs")
|
||||
```
|
||||
|
||||
### 3. Attach File
|
||||
```python
|
||||
await client.vector_stores.files.create(
|
||||
vector_store_id=vector_store.id, file_id=file_info.id
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Search
|
||||
```python
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="What is the main topic?", max_num_results=5
|
||||
)
|
||||
```
|
||||
|
||||
## File Processing & Search
|
||||
|
||||
**Processing**: 800 tokens default chunk size, 400 token overlap
|
||||
**Formats**: PDF, DOCX, TXT, Code files, etc.
|
||||
**Search**: Vector similarity, Hybrid (SQLite-vec), Filtered with metadata
|
||||
|
||||
## Configuration
|
||||
|
||||
> **Note**: For detailed configuration examples and options, see [Configuration Examples](../openai_file_operations_support.md#configuration-examples) in the full documentation.
|
||||
|
||||
**Basic Setup**: Configure vector_io and files providers in your run.yaml
|
||||
|
||||
## Common Use Cases
|
||||
|
||||
- **RAG Systems**: Document Q&A with file uploads
|
||||
- **Knowledge Bases**: Searchable document collections
|
||||
- **Content Analysis**: Document similarity and clustering
|
||||
- **Research Tools**: Literature review and analysis
|
||||
|
||||
## Performance Tips
|
||||
|
||||
> **Note**: For detailed performance optimization strategies, see [Performance Considerations](../openai_file_operations_support.md#performance-considerations) in the full documentation.
|
||||
|
||||
**Quick Tips**: Choose provider based on your needs (speed vs. storage vs. scalability)
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
> **Note**: For comprehensive troubleshooting, see [Troubleshooting](../openai_file_operations_support.md#troubleshooting) in the full documentation.
|
||||
|
||||
**Quick Fixes**: Check file format compatibility, optimize chunk sizes, monitor storage
|
||||
|
||||
## Resources
|
||||
|
||||
- [Full Documentation](openai_file_operations_support.md)
|
||||
- [Integration Guide](../concepts/file_operations_vector_stores.md)
|
||||
- [Files API](files_api.md)
|
||||
- [Provider Details](../vector_io/index.md)
|
292
docs/docs/providers/files/openai_file_operations_support.md
Normal file
292
docs/docs/providers/files/openai_file_operations_support.md
Normal file
|
@ -0,0 +1,292 @@
|
|||
# File Operations Support in Vector Store Providers
|
||||
|
||||
## Overview
|
||||
|
||||
This document provides a comprehensive overview of file operations and Vector Store API support across all available vector store providers in Llama Stack. As of release 0.2.14, the following providers support full file operations integration.
|
||||
|
||||
## Supported Providers
|
||||
|
||||
### ✅ Full File Operations Support
|
||||
|
||||
The following providers support complete file operations integration, including file upload, automatic processing, and search:
|
||||
|
||||
#### Inline Providers (Single Node)
|
||||
|
||||
| Provider | File Operations | Key Features |
|
||||
|----------|----------------|--------------|
|
||||
| **FAISS** | ✅ Full Support | Fast in-memory search, GPU acceleration |
|
||||
| **SQLite-vec** | ✅ Full Support | Hybrid search, disk-based storage |
|
||||
| **Milvus** | ✅ Full Support | High-performance, scalable indexing |
|
||||
|
||||
#### Remote Providers (Hosted)
|
||||
|
||||
| Provider | File Operations | Key Features |
|
||||
|----------|----------------|--------------|
|
||||
| **ChromaDB** | ✅ Full Support | Metadata filtering, persistent storage |
|
||||
| **Qdrant** | ✅ Full Support | Payload filtering, advanced search |
|
||||
| **Weaviate** | ✅ Full Support | GraphQL interface, schema management |
|
||||
| **Postgres (PGVector)** | ✅ Full Support | SQL integration, ACID compliance |
|
||||
|
||||
### 🔄 Partial Support
|
||||
|
||||
Some providers may support basic vector operations but lack full file operations integration:
|
||||
|
||||
| Provider | Status | Notes |
|
||||
|----------|--------|-------|
|
||||
| **Meta Reference** | 🔄 Basic | Core vector operations only |
|
||||
|
||||
## File Operations Features
|
||||
|
||||
All supported providers offer the following file operations capabilities:
|
||||
|
||||
### Core Functionality
|
||||
|
||||
- **File Upload & Processing**: Automatic document ingestion and chunking
|
||||
- **Vector Storage**: Embedding generation and storage
|
||||
- **Search & Retrieval**: Semantic search with metadata filtering
|
||||
- **File Management**: List, retrieve, and manage files in vector stores
|
||||
|
||||
### Advanced Features
|
||||
|
||||
- **Automatic Chunking**: Configurable chunk sizes and overlap
|
||||
- **Metadata Preservation**: File attributes and chunk metadata
|
||||
- **Status Tracking**: Monitor file processing progress
|
||||
- **Error Handling**: Comprehensive error reporting and recovery
|
||||
|
||||
## Implementation Details
|
||||
|
||||
### File Processing Pipeline
|
||||
|
||||
1. **Upload**: File uploaded via Files API
|
||||
2. **Extraction**: Text content extracted from various formats
|
||||
3. **Chunking**: Content split into optimal chunks (default: 800 tokens)
|
||||
4. **Embedding**: Chunks converted to vector embeddings
|
||||
5. **Storage**: Vectors stored with metadata in vector database
|
||||
6. **Indexing**: Search index updated for fast retrieval
|
||||
|
||||
### Supported File Formats
|
||||
|
||||
- **Documents**: PDF, DOCX, DOC
|
||||
- **Text**: TXT, MD, RST
|
||||
- **Code**: Python, JavaScript, Java, C++, etc.
|
||||
- **Data**: JSON, CSV, XML
|
||||
- **Web**: HTML files
|
||||
|
||||
### Chunking Strategies
|
||||
|
||||
- **Default**: 800 tokens with 400 token overlap
|
||||
- **Custom**: Configurable chunk sizes and overlap
|
||||
- **Semantic**: Intelligent boundary detection
|
||||
- **Static**: Fixed-size chunks with overlap
|
||||
|
||||
## Provider-Specific Features
|
||||
|
||||
### FAISS
|
||||
|
||||
- **Storage**: In-memory with optional persistence
|
||||
- **Performance**: Optimized for speed and GPU acceleration
|
||||
- **Use Case**: High-performance, memory-constrained environments
|
||||
|
||||
### SQLite-vec
|
||||
|
||||
- **Storage**: Disk-based with SQLite backend
|
||||
- **Search**: Hybrid vector + keyword search
|
||||
- **Use Case**: Large document collections, frequent updates
|
||||
|
||||
### Milvus
|
||||
|
||||
- **Storage**: Scalable distributed storage
|
||||
- **Indexing**: Multiple index types (IVF, HNSW)
|
||||
- **Use Case**: Production deployments, large-scale applications
|
||||
|
||||
### ChromaDB
|
||||
|
||||
- **Storage**: Persistent storage with metadata
|
||||
- **Filtering**: Advanced metadata filtering
|
||||
- **Use Case**: Applications requiring rich metadata
|
||||
|
||||
### Qdrant
|
||||
|
||||
- **Storage**: High-performance vector database
|
||||
- **Filtering**: Payload-based filtering
|
||||
- **Use Case**: Real-time applications, complex queries
|
||||
|
||||
### Weaviate
|
||||
|
||||
- **Storage**: GraphQL-native vector database
|
||||
- **Schema**: Flexible schema management
|
||||
- **Use Case**: Applications requiring complex data relationships
|
||||
|
||||
### Postgres (PGVector)
|
||||
|
||||
- **Storage**: SQL database with vector extensions
|
||||
- **Integration**: ACID compliance, existing SQL workflows
|
||||
- **Use Case**: Applications requiring transactional guarantees
|
||||
|
||||
## Configuration Examples
|
||||
|
||||
### Basic Configuration
|
||||
|
||||
```yaml
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ~/.llama/faiss_store.db
|
||||
```
|
||||
|
||||
### With FileResponse Support
|
||||
|
||||
```yaml
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ~/.llama/faiss_store.db
|
||||
|
||||
files:
|
||||
- provider_id: local-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ~/.llama/files
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ~/.llama/files_metadata.db
|
||||
```
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Python Client
|
||||
|
||||
```python
|
||||
from llama_stack import LlamaStackClient
|
||||
|
||||
client = LlamaStackClient("http://localhost:8000")
|
||||
|
||||
# Create vector store
|
||||
vector_store = client.vector_stores.create(name="documents")
|
||||
|
||||
# Upload and process file
|
||||
with open("document.pdf", "rb") as f:
|
||||
file_info = await client.files.upload(file=f, purpose="assistants")
|
||||
|
||||
# Attach to vector store
|
||||
await client.vector_stores.files.create(
|
||||
vector_store_id=vector_store.id, file_id=file_info.id
|
||||
)
|
||||
|
||||
# Search
|
||||
results = await client.vector_stores.search(
|
||||
vector_store_id=vector_store.id, query="What is the main topic?", max_num_results=5
|
||||
)
|
||||
```
|
||||
|
||||
### cURL Commands
|
||||
|
||||
```bash
|
||||
# Upload file
|
||||
curl -X POST http://localhost:8000/v1/openai/v1/files \
|
||||
-F "file=@document.pdf" \
|
||||
-F "purpose=assistants"
|
||||
|
||||
# Create vector store
|
||||
curl -X POST http://localhost:8000/v1/openai/v1/vector_stores \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"name": "documents"}'
|
||||
|
||||
# Attach file to vector store
|
||||
curl -X POST http://localhost:8000/v1/openai/v1/vector_stores/{store_id}/files \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"file_id": "file-abc123"}'
|
||||
|
||||
# Search vector store
|
||||
curl -X POST http://localhost:8000/v1/openai/v1/vector_stores/{store_id}/search \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "What is the main topic?", "max_num_results": 5}'
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Chunk Size Optimization
|
||||
|
||||
- **Small chunks (400-600 tokens)**: Better precision, more results
|
||||
- **Large chunks (800-1200 tokens)**: Better context, fewer results
|
||||
- **Overlap (50%)**: Maintains context between chunks
|
||||
|
||||
### Storage Efficiency
|
||||
|
||||
- **FAISS**: Fastest, but memory-limited
|
||||
- **SQLite-vec**: Good balance of performance and storage
|
||||
- **Milvus**: Scalable, production-ready
|
||||
- **Remote providers**: Managed, but network-dependent
|
||||
|
||||
### Search Performance
|
||||
|
||||
- **Vector search**: Fastest for semantic queries
|
||||
- **Hybrid search**: Best accuracy (SQLite-vec only)
|
||||
- **Filtered search**: Fast with metadata constraints
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **File Processing Failures**
|
||||
- Check file format compatibility
|
||||
- Verify file size limits
|
||||
- Review error messages in file status
|
||||
|
||||
2. **Search Performance**
|
||||
- Optimize chunk sizes for your use case
|
||||
- Use filters to narrow search scope
|
||||
- Monitor vector store metrics
|
||||
|
||||
3. **Storage Issues**
|
||||
- Check available disk space
|
||||
- Verify database permissions
|
||||
- Monitor memory usage (for in-memory providers)
|
||||
|
||||
### Monitoring
|
||||
|
||||
```python
|
||||
# Check file processing status
|
||||
file_status = await client.vector_stores.files.retrieve(
|
||||
vector_store_id=vector_store.id, file_id=file_info.id
|
||||
)
|
||||
|
||||
if file_status.status == "failed":
|
||||
print(f"Error: {file_status.last_error.message}")
|
||||
|
||||
# Monitor vector store health
|
||||
health = await client.vector_stores.health(vector_store_id=vector_store.id)
|
||||
print(f"Status: {health.status}")
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **File Organization**: Use descriptive names and organize by purpose
|
||||
2. **Chunking Strategy**: Test different sizes for your specific use case
|
||||
3. **Metadata**: Add relevant attributes for better filtering
|
||||
4. **Monitoring**: Track processing status and search performance
|
||||
5. **Cleanup**: Regularly remove unused files to manage storage
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
Planned improvements for file operations support:
|
||||
|
||||
- **Batch Processing**: Process multiple files simultaneously
|
||||
- **Advanced Chunking**: More sophisticated chunking algorithms
|
||||
- **Custom Embeddings**: Support for custom embedding models
|
||||
- **Real-time Updates**: Live file processing and indexing
|
||||
- **Multi-format Support**: Enhanced file format support
|
||||
|
||||
## Support and Resources
|
||||
|
||||
- **Documentation**: [File Operations and Vector Store Integration](../concepts/file_operations_vector_stores.md)
|
||||
- **API Reference**: [Files API](files_api.md)
|
||||
- **Provider Docs**: [Vector Store Providers](../vector_io/index.md)
|
||||
- **Examples**: [Getting Started](../getting_started/index.md)
|
||||
- **Community**: [GitHub Discussions](https://github.com/meta-llama/llama-stack/discussions)
|
150
docs/source/index.md
Normal file
150
docs/source/index.md
Normal file
|
@ -0,0 +1,150 @@
|
|||
# Llama Stack
|
||||
Welcome to Llama Stack, the open-source framework for building generative AI applications.
|
||||
```{admonition} Llama 4 is here!
|
||||
:class: tip
|
||||
|
||||
Check out [Getting Started with Llama 4](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started_llama4.ipynb)
|
||||
```
|
||||
```{admonition} News
|
||||
:class: tip
|
||||
|
||||
Llama Stack {{ llama_stack_version }} is now available! See the {{ llama_stack_version_link }} for more details.
|
||||
```
|
||||
|
||||
|
||||
## What is Llama Stack?
|
||||
|
||||
Llama Stack defines and standardizes the core building blocks needed to bring generative AI applications to market. It provides a unified set of OpenAI-compatible APIs with implementations from leading service providers, enabling seamless transitions between development and production environments. More specifically, it provides
|
||||
|
||||
- **OpenAI-compatible API layer** for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry
|
||||
- **Plugin architecture** to support the rich ecosystem of implementations of the different APIs in different environments like local development, on-premises, cloud, and mobile
|
||||
- **Prepackaged verified distributions** which offer a one-stop solution for developers to get started quickly and reliably in any environment
|
||||
- **Multiple developer interfaces** like CLI and SDKs for Python, Node, iOS, and Android
|
||||
- **Standalone applications** as examples for how to build production-grade AI applications with Llama Stack
|
||||
|
||||
```{image} ../_static/llama-stack.png
|
||||
:alt: Llama Stack
|
||||
:width: 400px
|
||||
```
|
||||
|
||||
Our goal is to provide pre-packaged implementations (aka "distributions") which can be run in a variety of deployment environments. LlamaStack can assist you in your entire app development lifecycle - start iterating on local, mobile or desktop and seamlessly transition to on-prem or public cloud deployments. At every point in this transition, the same set of APIs and the same developer experience is available.
|
||||
|
||||
## How does Llama Stack work?
|
||||
Llama Stack consists of a [server](./distributions/index.md) (with multiple pluggable API [providers](./providers/index.md)) and Client SDKs (see below) meant to
|
||||
be used in your applications. The server can be run in a variety of environments, including local (inline)
|
||||
development, on-premises, and cloud. The client SDKs are available for Python, Swift, Node, and
|
||||
Kotlin.
|
||||
|
||||
## Quick Links
|
||||
|
||||
- Ready to build? Check out the [Quick Start](getting_started/index) to get started.
|
||||
- Want to contribute? See the [Contributing](contributing/index) guide.
|
||||
|
||||
## Supported Llama Stack Implementations
|
||||
|
||||
A number of "adapters" are available for some popular Inference and Vector Store providers. For other APIs (particularly Safety and Agents), we provide *reference implementations* you can use to get started. We expect this list to grow over time. We are slowly onboarding more providers to the ecosystem as we get more confidence in the APIs.
|
||||
|
||||
**Inference API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Meta Reference | Single Node |
|
||||
| Ollama | Single Node |
|
||||
| Fireworks | Hosted |
|
||||
| Together | Hosted |
|
||||
| NVIDIA NIM | Hosted and Single Node |
|
||||
| vLLM | Hosted and Single Node |
|
||||
| TGI | Hosted and Single Node |
|
||||
| AWS Bedrock | Hosted |
|
||||
| Cerebras | Hosted |
|
||||
| Groq | Hosted |
|
||||
| SambaNova | Hosted |
|
||||
| PyTorch ExecuTorch | On-device iOS, Android |
|
||||
| OpenAI | Hosted |
|
||||
| Anthropic | Hosted |
|
||||
| Gemini | Hosted |
|
||||
| WatsonX | Hosted |
|
||||
|
||||
**Agents API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Meta Reference | Single Node |
|
||||
| Fireworks | Hosted |
|
||||
| Together | Hosted |
|
||||
| PyTorch ExecuTorch | On-device iOS |
|
||||
|
||||
**Vector IO API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| FAISS | Single Node |
|
||||
| SQLite-Vec | Single Node |
|
||||
| Chroma | Hosted and Single Node |
|
||||
| Milvus | Hosted and Single Node |
|
||||
| Postgres (PGVector) | Hosted and Single Node |
|
||||
| Weaviate | Hosted |
|
||||
| Qdrant | Hosted and Single Node |
|
||||
|
||||
**Files API (OpenAI-compatible)**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Local Filesystem | Single Node |
|
||||
| S3 | Hosted |
|
||||
|
||||
**Vector Store Files API (OpenAI-compatible)**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| FAISS | Single Node |
|
||||
| SQLite-vec | Single Node |
|
||||
| Milvus | Single Node |
|
||||
| ChromaDB | Hosted and Single Node |
|
||||
| Qdrant | Hosted and Single Node |
|
||||
| Weaviate | Hosted |
|
||||
| Postgres (PGVector) | Hosted and Single Node |
|
||||
|
||||
**Safety API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Llama Guard | Depends on Inference Provider |
|
||||
| Prompt Guard | Single Node |
|
||||
| Code Scanner | Single Node |
|
||||
| AWS Bedrock | Hosted |
|
||||
|
||||
**Post Training API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Meta Reference | Single Node |
|
||||
| HuggingFace | Single Node |
|
||||
| TorchTune | Single Node |
|
||||
| NVIDIA NEMO | Hosted |
|
||||
|
||||
**Eval API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Meta Reference | Single Node |
|
||||
| NVIDIA NEMO | Hosted |
|
||||
|
||||
**Telemetry API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Meta Reference | Single Node |
|
||||
|
||||
**Tool Runtime API**
|
||||
| **Provider** | **Environments** |
|
||||
| :----: | :----: |
|
||||
| Brave Search | Hosted |
|
||||
| RAG Runtime | Single Node |
|
||||
|
||||
```{toctree}
|
||||
:hidden:
|
||||
:maxdepth: 3
|
||||
|
||||
self
|
||||
getting_started/index
|
||||
concepts/index
|
||||
providers/index
|
||||
distributions/index
|
||||
advanced_apis/index
|
||||
building_applications/index
|
||||
deploying/index
|
||||
contributing/index
|
||||
references/index
|
||||
```
|
Loading…
Add table
Add a link
Reference in a new issue