address feedback

This commit is contained in:
Dinesh Yeduguru 2024-11-20 12:19:12 -08:00
parent 21a11b2bf7
commit 15200e23ba

View file

@ -9,7 +9,7 @@ In this guide, we'll walk through using ollama as the inference provider and bui
Llama stack consists of a distribution server and an accompanying client SDK. The distribution server can be configured for different providers for inference, memory, agents, evals etc. This configuration is defined in a yaml file called `run.yaml`. Llama stack consists of a distribution server and an accompanying client SDK. The distribution server can be configured for different providers for inference, memory, agents, evals etc. This configuration is defined in a yaml file called `run.yaml`.
### Step 1. Start the ollama server ### Step 1. Start the inference server
```bash ```bash
export LLAMA_STACK_PORT=5001 export LLAMA_STACK_PORT=5001
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
@ -18,7 +18,7 @@ export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
``` ```
### Step 2. Start the llama stack server ### Step 2. Start the Llama Stack server
```bash ```bash
export LLAMA_STACK_PORT=5001 export LLAMA_STACK_PORT=5001
@ -39,6 +39,7 @@ pip install llama-stack-client
``` ```
#### Check the connectivity to the server #### Check the connectivity to the server
We will use the `llama-stack-client` CLI to check the connectivity to the server. This should be installed in your environment if you installed the SDK.
```bash ```bash
llama-stack-client --endpoint http://localhost:5001 models list llama-stack-client --endpoint http://localhost:5001 models list
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
@ -48,7 +49,7 @@ llama-stack-client --endpoint http://localhost:5001 models list
└──────────────────────────────────┴─────────────┴───────────────────────────┴──────────┘ └──────────────────────────────────┴─────────────┴───────────────────────────┴──────────┘
``` ```
### Step 4. Sample app code ### Step 4. Use the SDK
```python ```python
from llama_stack_client import LlamaStackClient from llama_stack_client import LlamaStackClient
@ -69,6 +70,9 @@ response = client.inference.chat_completion(
print(response.completion_message.content) print(response.completion_message.content)
``` ```
### Step 5. Your first RAG agent
Refer to [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_memory_bank.py) on an example of how to build a RAG agent with memory.
## Next Steps ## Next Steps
For more advanced topics, check out: For more advanced topics, check out: