mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
Added Ollama as an inference impl (#20)
* fix non-streaming api in inference server * unit test for inline inference * Added non-streaming ollama inference impl * add streaming support for ollama inference with tests * addressing comments --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
This commit is contained in:
parent
c253c1c9ad
commit
156bfa0e15
9 changed files with 921 additions and 33 deletions
307
tests/test_inference.py
Normal file
307
tests/test_inference.py
Normal file
|
@ -0,0 +1,307 @@
|
|||
# Run this test using the following command:
|
||||
# python -m unittest tests/test_inference.py
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
import textwrap
|
||||
import unittest
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
from llama_models.llama3_1.api.datatypes import (
|
||||
BuiltinTool,
|
||||
InstructModel,
|
||||
UserMessage,
|
||||
StopReason,
|
||||
SystemMessage,
|
||||
)
|
||||
|
||||
from llama_toolchain.inference.api.config import (
|
||||
ImplType,
|
||||
InferenceConfig,
|
||||
InlineImplConfig,
|
||||
RemoteImplConfig,
|
||||
ModelCheckpointConfig,
|
||||
PytorchCheckpoint,
|
||||
CheckpointQuantizationFormat,
|
||||
)
|
||||
from llama_toolchain.inference.api_instance import (
|
||||
get_inference_api_instance,
|
||||
)
|
||||
from llama_toolchain.inference.api.datatypes import (
|
||||
ChatCompletionResponseEventType,
|
||||
)
|
||||
from llama_toolchain.inference.api.endpoints import (
|
||||
ChatCompletionRequest
|
||||
)
|
||||
from llama_toolchain.inference.inference import InferenceImpl
|
||||
from llama_toolchain.inference.event_logger import EventLogger
|
||||
|
||||
|
||||
HELPER_MSG = """
|
||||
This test needs llama-3.1-8b-instruct models.
|
||||
Please donwload using the llama cli
|
||||
|
||||
llama download --source huggingface --model-id llama3_1_8b_instruct --hf-token <HF_TOKEN>
|
||||
"""
|
||||
|
||||
|
||||
class InferenceTests(unittest.IsolatedAsyncioTestCase):
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
# This runs the async setup function
|
||||
asyncio.run(cls.asyncSetUpClass())
|
||||
|
||||
@classmethod
|
||||
async def asyncSetUpClass(cls):
|
||||
# assert model exists on local
|
||||
model_dir = os.path.expanduser("~/.llama/checkpoints/Meta-Llama-3.1-8B-Instruct/original/")
|
||||
assert os.path.isdir(model_dir), HELPER_MSG
|
||||
|
||||
tokenizer_path = os.path.join(model_dir, "tokenizer.model")
|
||||
assert os.path.exists(tokenizer_path), HELPER_MSG
|
||||
|
||||
inline_config = InlineImplConfig(
|
||||
checkpoint_config=ModelCheckpointConfig(
|
||||
checkpoint=PytorchCheckpoint(
|
||||
checkpoint_dir=model_dir,
|
||||
tokenizer_path=tokenizer_path,
|
||||
model_parallel_size=1,
|
||||
quantization_format=CheckpointQuantizationFormat.bf16,
|
||||
)
|
||||
),
|
||||
max_seq_len=2048,
|
||||
)
|
||||
inference_config = InferenceConfig(
|
||||
impl_config=inline_config
|
||||
)
|
||||
|
||||
# -- For faster testing iteration --
|
||||
# remote_config = RemoteImplConfig(
|
||||
# url="http://localhost:5000"
|
||||
# )
|
||||
# inference_config = InferenceConfig(
|
||||
# impl_config=remote_config
|
||||
# )
|
||||
|
||||
cls.api = await get_inference_api_instance(inference_config)
|
||||
await cls.api.initialize()
|
||||
|
||||
current_date = datetime.now()
|
||||
formatted_date = current_date.strftime("%d %B %Y")
|
||||
cls.system_prompt = SystemMessage(
|
||||
content=textwrap.dedent(f"""
|
||||
Environment: ipython
|
||||
Tools: brave_search
|
||||
|
||||
Cutting Knowledge Date: December 2023
|
||||
Today Date:{formatted_date}
|
||||
|
||||
"""),
|
||||
)
|
||||
cls.system_prompt_with_custom_tool = SystemMessage(
|
||||
content=textwrap.dedent("""
|
||||
Environment: ipython
|
||||
Tools: brave_search, wolfram_alpha, photogen
|
||||
|
||||
Cutting Knowledge Date: December 2023
|
||||
Today Date: 30 July 2024
|
||||
|
||||
|
||||
You have access to the following functions:
|
||||
|
||||
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
|
||||
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
|
||||
|
||||
|
||||
Think very carefully before calling functions.
|
||||
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
|
||||
|
||||
<function=example_function_name>{"example_name": "example_value"}</function>
|
||||
|
||||
Reminder:
|
||||
- If looking for real time information use relevant functions before falling back to brave_search
|
||||
- Function calls MUST follow the specified format, start with <function= and end with </function>
|
||||
- Required parameters MUST be specified
|
||||
- Only call one function at a time
|
||||
- Put the entire function call reply on one line
|
||||
|
||||
"""
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
# This runs the async teardown function
|
||||
asyncio.run(cls.asyncTearDownClass())
|
||||
|
||||
@classmethod
|
||||
async def asyncTearDownClass(cls):
|
||||
await cls.api.shutdown()
|
||||
|
||||
async def test_text(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
UserMessage(
|
||||
content="What is the capital of France?",
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
iterator = InferenceTests.api.chat_completion(request)
|
||||
|
||||
async for chunk in iterator:
|
||||
response = chunk
|
||||
|
||||
result = response.completion_message.content
|
||||
self.assertTrue("Paris" in result, result)
|
||||
|
||||
async def test_text_streaming(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
UserMessage(
|
||||
content="What is the capital of France?",
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
iterator = InferenceTests.api.chat_completion(request)
|
||||
|
||||
events = []
|
||||
async for chunk in iterator:
|
||||
events.append(chunk.event)
|
||||
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
||||
|
||||
self.assertEqual(
|
||||
events[0].event_type,
|
||||
ChatCompletionResponseEventType.start
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-1].event_type,
|
||||
ChatCompletionResponseEventType.complete
|
||||
)
|
||||
|
||||
response = ""
|
||||
for e in events[1:-1]:
|
||||
response += e.delta
|
||||
|
||||
self.assertTrue("Paris" in response, response)
|
||||
|
||||
async def test_custom_tool_call(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
InferenceTests.system_prompt_with_custom_tool,
|
||||
UserMessage(
|
||||
content="Use provided function to find the boiling point of polyjuice in fahrenheit?",
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
iterator = InferenceTests.api.chat_completion(request)
|
||||
async for r in iterator:
|
||||
response = r
|
||||
|
||||
completion_message = response.completion_message
|
||||
|
||||
self.assertEqual(completion_message.content, "")
|
||||
|
||||
# FIXME: This test fails since there is a bug where
|
||||
# custom tool calls return incoorect stop_reason as out_of_tokens
|
||||
# instead of end_of_turn
|
||||
# self.assertEqual(completion_message.stop_reason, StopReason.end_of_turn)
|
||||
|
||||
self.assertEqual(len(completion_message.tool_calls), 1, completion_message.tool_calls)
|
||||
self.assertEqual(completion_message.tool_calls[0].tool_name, "get_boiling_point")
|
||||
|
||||
args = completion_message.tool_calls[0].arguments
|
||||
self.assertTrue(isinstance(args, dict))
|
||||
self.assertTrue(args["liquid_name"], "polyjuice")
|
||||
|
||||
async def test_tool_call_streaming(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
self.system_prompt,
|
||||
UserMessage(
|
||||
content="Who is the current US President?",
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
iterator = InferenceTests.api.chat_completion(request)
|
||||
|
||||
events = []
|
||||
async for chunk in iterator:
|
||||
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
||||
events.append(chunk.event)
|
||||
|
||||
self.assertEqual(
|
||||
events[0].event_type,
|
||||
ChatCompletionResponseEventType.start
|
||||
)
|
||||
# last event is of type "complete"
|
||||
self.assertEqual(
|
||||
events[-1].event_type,
|
||||
ChatCompletionResponseEventType.complete
|
||||
)
|
||||
# last but one event should be eom with tool call
|
||||
self.assertEqual(
|
||||
events[-2].event_type,
|
||||
ChatCompletionResponseEventType.progress
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-2].stop_reason,
|
||||
StopReason.end_of_message
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-2].delta.content.tool_name,
|
||||
BuiltinTool.brave_search
|
||||
)
|
||||
|
||||
async def test_custom_tool_call_streaming(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
InferenceTests.system_prompt_with_custom_tool,
|
||||
UserMessage(
|
||||
content="Use provided function to find the boiling point of polyjuice?",
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
iterator = InferenceTests.api.chat_completion(request)
|
||||
events = []
|
||||
async for chunk in iterator:
|
||||
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
||||
events.append(chunk.event)
|
||||
|
||||
self.assertEqual(
|
||||
events[0].event_type,
|
||||
ChatCompletionResponseEventType.start
|
||||
)
|
||||
# last event is of type "complete"
|
||||
self.assertEqual(
|
||||
events[-1].event_type,
|
||||
ChatCompletionResponseEventType.complete
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-1].stop_reason,
|
||||
StopReason.end_of_turn
|
||||
)
|
||||
# last but one event should be eom with tool call
|
||||
self.assertEqual(
|
||||
events[-2].event_type,
|
||||
ChatCompletionResponseEventType.progress
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-2].stop_reason,
|
||||
StopReason.end_of_turn
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-2].delta.content.tool_name,
|
||||
"get_boiling_point"
|
||||
)
|
296
tests/test_ollama_inference.py
Normal file
296
tests/test_ollama_inference.py
Normal file
|
@ -0,0 +1,296 @@
|
|||
import textwrap
|
||||
import unittest
|
||||
from datetime import datetime
|
||||
|
||||
from llama_models.llama3_1.api.datatypes import (
|
||||
BuiltinTool,
|
||||
InstructModel,
|
||||
UserMessage,
|
||||
StopReason,
|
||||
SystemMessage,
|
||||
)
|
||||
from llama_toolchain.inference.api_instance import (
|
||||
get_inference_api_instance,
|
||||
)
|
||||
from llama_toolchain.inference.api.datatypes import (
|
||||
ChatCompletionResponseEventType,
|
||||
)
|
||||
from llama_toolchain.inference.api.endpoints import (
|
||||
ChatCompletionRequest
|
||||
)
|
||||
from llama_toolchain.inference.api.config import (
|
||||
InferenceConfig,
|
||||
OllamaImplConfig
|
||||
)
|
||||
from llama_toolchain.inference.ollama import (
|
||||
OllamaInference
|
||||
)
|
||||
|
||||
|
||||
class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
|
||||
|
||||
async def asyncSetUp(self):
|
||||
ollama_config = OllamaImplConfig(
|
||||
model="llama3.1",
|
||||
url="http://localhost:11434",
|
||||
)
|
||||
|
||||
# setup ollama
|
||||
self.api = await get_inference_api_instance(
|
||||
InferenceConfig(impl_config=ollama_config)
|
||||
)
|
||||
await self.api.initialize()
|
||||
|
||||
current_date = datetime.now()
|
||||
formatted_date = current_date.strftime("%d %B %Y")
|
||||
self.system_prompt = SystemMessage(
|
||||
content=textwrap.dedent(f"""
|
||||
Environment: ipython
|
||||
Tools: brave_search
|
||||
|
||||
Cutting Knowledge Date: December 2023
|
||||
Today Date:{formatted_date}
|
||||
|
||||
"""),
|
||||
)
|
||||
|
||||
self.system_prompt_with_custom_tool = SystemMessage(
|
||||
content=textwrap.dedent("""
|
||||
Environment: ipython
|
||||
Tools: brave_search, wolfram_alpha, photogen
|
||||
|
||||
Cutting Knowledge Date: December 2023
|
||||
Today Date: 30 July 2024
|
||||
|
||||
|
||||
You have access to the following functions:
|
||||
|
||||
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
|
||||
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
|
||||
|
||||
|
||||
Think very carefully before calling functions.
|
||||
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
|
||||
|
||||
<function=example_function_name>{"example_name": "example_value"}</function>
|
||||
|
||||
Reminder:
|
||||
- If looking for real time information use relevant functions before falling back to brave_search
|
||||
- Function calls MUST follow the specified format, start with <function= and end with </function>
|
||||
- Required parameters MUST be specified
|
||||
- Only call one function at a time
|
||||
- Put the entire function call reply on one line
|
||||
|
||||
"""
|
||||
),
|
||||
)
|
||||
|
||||
async def asyncTearDown(self):
|
||||
await self.api.shutdown()
|
||||
|
||||
async def test_text(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
UserMessage(
|
||||
content="What is the capital of France?",
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
iterator = self.api.chat_completion(request)
|
||||
async for r in iterator:
|
||||
response = r
|
||||
|
||||
self.assertTrue("Paris" in response.completion_message.content)
|
||||
self.assertEqual(response.completion_message.stop_reason, StopReason.end_of_turn)
|
||||
|
||||
async def test_tool_call(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
self.system_prompt,
|
||||
UserMessage(
|
||||
content="Who is the current US President?",
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
iterator = self.api.chat_completion(request)
|
||||
async for r in iterator:
|
||||
response = r
|
||||
|
||||
completion_message = response.completion_message
|
||||
|
||||
self.assertEqual(completion_message.content, "")
|
||||
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
|
||||
|
||||
self.assertEqual(len(completion_message.tool_calls), 1, completion_message.tool_calls)
|
||||
self.assertEqual(completion_message.tool_calls[0].tool_name, BuiltinTool.brave_search)
|
||||
self.assertTrue(
|
||||
"president" in completion_message.tool_calls[0].arguments["query"].lower()
|
||||
)
|
||||
|
||||
async def test_code_execution(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
self.system_prompt,
|
||||
UserMessage(
|
||||
content="Write code to compute the 5th prime number",
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
iterator = self.api.chat_completion(request)
|
||||
async for r in iterator:
|
||||
response = r
|
||||
|
||||
completion_message = response.completion_message
|
||||
|
||||
self.assertEqual(completion_message.content, "")
|
||||
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
|
||||
|
||||
self.assertEqual(len(completion_message.tool_calls), 1, completion_message.tool_calls)
|
||||
self.assertEqual(completion_message.tool_calls[0].tool_name, BuiltinTool.code_interpreter)
|
||||
code = completion_message.tool_calls[0].arguments["code"]
|
||||
self.assertTrue("def " in code.lower(), code)
|
||||
|
||||
async def test_custom_tool(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
self.system_prompt_with_custom_tool,
|
||||
UserMessage(
|
||||
content="Use provided function to find the boiling point of polyjuice?",
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
iterator = self.api.chat_completion(request)
|
||||
async for r in iterator:
|
||||
response = r
|
||||
|
||||
completion_message = response.completion_message
|
||||
|
||||
self.assertEqual(completion_message.content, "")
|
||||
self.assertEqual(completion_message.stop_reason, StopReason.end_of_turn)
|
||||
|
||||
self.assertEqual(len(completion_message.tool_calls), 1, completion_message.tool_calls)
|
||||
self.assertEqual(completion_message.tool_calls[0].tool_name, "get_boiling_point")
|
||||
|
||||
args = completion_message.tool_calls[0].arguments
|
||||
self.assertTrue(isinstance(args, dict))
|
||||
self.assertTrue(args["liquid_name"], "polyjuice")
|
||||
|
||||
|
||||
async def test_text_streaming(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
UserMessage(
|
||||
content="What is the capital of France?",
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
iterator = self.api.chat_completion(request)
|
||||
events = []
|
||||
async for chunk in iterator:
|
||||
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
||||
events.append(chunk.event)
|
||||
|
||||
response = ""
|
||||
for e in events[1:-1]:
|
||||
response += e.delta
|
||||
|
||||
self.assertEqual(
|
||||
events[0].event_type,
|
||||
ChatCompletionResponseEventType.start
|
||||
)
|
||||
# last event is of type "complete"
|
||||
self.assertEqual(
|
||||
events[-1].event_type,
|
||||
ChatCompletionResponseEventType.complete
|
||||
)
|
||||
# last but 1 event should be of type "progress"
|
||||
self.assertEqual(
|
||||
events[-2].event_type,
|
||||
ChatCompletionResponseEventType.progress
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-2].stop_reason,
|
||||
None,
|
||||
)
|
||||
self.assertTrue("Paris" in response, response)
|
||||
|
||||
async def test_tool_call_streaming(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
self.system_prompt,
|
||||
UserMessage(
|
||||
content="Who is the current US President?",
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
iterator = self.api.chat_completion(request)
|
||||
events = []
|
||||
async for chunk in iterator:
|
||||
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
||||
events.append(chunk.event)
|
||||
|
||||
self.assertEqual(
|
||||
events[0].event_type,
|
||||
ChatCompletionResponseEventType.start
|
||||
)
|
||||
# last event is of type "complete"
|
||||
self.assertEqual(
|
||||
events[-1].event_type,
|
||||
ChatCompletionResponseEventType.complete
|
||||
)
|
||||
|
||||
async def test_custom_tool_call_streaming(self):
|
||||
request = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_8b_chat,
|
||||
messages=[
|
||||
self.system_prompt_with_custom_tool,
|
||||
UserMessage(
|
||||
content="Use provided function to find the boiling point of polyjuice?",
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
iterator = self.api.chat_completion(request)
|
||||
events = []
|
||||
async for chunk in iterator:
|
||||
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
||||
events.append(chunk.event)
|
||||
|
||||
self.assertEqual(
|
||||
events[0].event_type,
|
||||
ChatCompletionResponseEventType.start
|
||||
)
|
||||
# last event is of type "complete"
|
||||
self.assertEqual(
|
||||
events[-1].event_type,
|
||||
ChatCompletionResponseEventType.complete
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-1].stop_reason,
|
||||
StopReason.end_of_turn
|
||||
)
|
||||
# last but one event should be eom with tool call
|
||||
self.assertEqual(
|
||||
events[-2].event_type,
|
||||
ChatCompletionResponseEventType.progress
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-2].delta.content.tool_name,
|
||||
"get_boiling_point"
|
||||
)
|
||||
self.assertEqual(
|
||||
events[-2].stop_reason,
|
||||
StopReason.end_of_turn
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue