mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Merge branch 'meta-llama:main' into qdrant
This commit is contained in:
commit
1575578446
101 changed files with 3310 additions and 722 deletions
30
.github/workflows/pre-commit.yml
vendored
30
.github/workflows/pre-commit.yml
vendored
|
@ -1,6 +1,9 @@
|
|||
name: Pre-commit
|
||||
|
||||
on: [pull_request]
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
|
@ -19,27 +22,4 @@ jobs:
|
|||
**/requirements*.txt
|
||||
.pre-commit-config.yaml
|
||||
|
||||
- name: Install pre-commit
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pre-commit
|
||||
|
||||
- name: Fetch base branch
|
||||
run: git fetch origin ${{ github.event.pull_request.base.ref }}:refs/remotes/origin/${{ github.event.pull_request.base.ref }}
|
||||
|
||||
- name: Fetch head commit from PR
|
||||
run: git fetch origin pull/${{ github.event.pull_request.number }}/head:pr-${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
run: |
|
||||
git diff --name-only origin/${{ github.event.pull_request.base.ref }} pr-${{ github.event.pull_request.number }} > changed_files.txt
|
||||
cat changed_files.txt
|
||||
|
||||
- name: Run pre-commit
|
||||
run: |
|
||||
if [ -s changed_files.txt ]; then
|
||||
pre-commit run --files $(cat changed_files.txt | tr '\n' ' ')
|
||||
else
|
||||
echo "No changed files to run pre-commit on."
|
||||
fi
|
||||
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd #v3.0.1
|
||||
|
|
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -15,3 +15,4 @@ Package.resolved
|
|||
*.ipynb_checkpoints*
|
||||
.venv/
|
||||
.idea
|
||||
_build
|
||||
|
|
32
.readthedocs.yaml
Normal file
32
.readthedocs.yaml
Normal file
|
@ -0,0 +1,32 @@
|
|||
# .readthedocs.yaml
|
||||
# Read the Docs configuration file
|
||||
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||
|
||||
# Required
|
||||
version: 2
|
||||
|
||||
# Set the OS, Python version and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.12"
|
||||
# You can also specify other tool versions:
|
||||
# nodejs: "19"
|
||||
# rust: "1.64"
|
||||
# golang: "1.19"
|
||||
|
||||
# Build documentation in the "docs/" directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/source/conf.py
|
||||
|
||||
# Optionally build your docs in additional formats such as PDF and ePub
|
||||
# formats:
|
||||
# - pdf
|
||||
# - epub
|
||||
|
||||
# Optional but recommended, declare the Python requirements required
|
||||
# to build your documentation
|
||||
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
|
||||
python:
|
||||
install:
|
||||
- requirements: docs/requirements.txt
|
13
README.md
13
README.md
|
@ -92,9 +92,16 @@ The `llama` CLI makes it easy to work with the Llama Stack set of tools. Please
|
|||
* [CLI reference](docs/cli_reference.md)
|
||||
* Guide using `llama` CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution.
|
||||
* [Getting Started](docs/getting_started.md)
|
||||
* Guide to build and run a Llama Stack server.
|
||||
* Quick guide to start a Llama Stack server.
|
||||
* [Jupyter notebook](./docs/getting_started.ipynb) to walk-through how to use simple text and vision inference llama_stack_client APIs
|
||||
* [Building a Llama Stack Distribution](docs/building_distro.md)
|
||||
* Guide to build a Llama Stack distribution
|
||||
* [Distributions](./distributions/)
|
||||
* References to start Llama Stack distributions backed with different API providers.
|
||||
* [Developer Cookbook](./docs/developer_cookbook.md)
|
||||
* References to guides to help you get started based on your developer needs.
|
||||
* [Contributing](CONTRIBUTING.md)
|
||||
|
||||
* [Adding a new API Provider](./docs/new_api_provider.md) to walk-through how to add a new API provider.
|
||||
|
||||
## Llama Stack Client SDK
|
||||
|
||||
|
@ -106,3 +113,5 @@ The `llama` CLI makes it easy to work with the Llama Stack set of tools. Please
|
|||
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) |
|
||||
|
||||
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
||||
|
|
13
distributions/README.md
Normal file
13
distributions/README.md
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Llama Stack Distribution
|
||||
|
||||
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
|
||||
|
||||
|
||||
## Quick Start Llama Stack Distributions Guide
|
||||
| **Distribution** | **Llama Stack Docker** | Start This Distribution | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|:----------------: |:------------------------------------------: |:-----------------------: |:------------------: |:------------------: |:------------------: |:------------------: |:------------------: |
|
||||
| Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](./meta-reference-gpu/) | meta-reference | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](./ollama/) | remote::ollama | meta-reference | remote::pgvector; remote::chromadb | remote::ollama | meta-reference |
|
||||
| TGI | [llamastack/distribution-tgi](https://hub.docker.com/repository/docker/llamastack/distribution-tgi/general) | [Guide](./tgi/) | remote::tgi | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Together | [llamastack/distribution-together](https://hub.docker.com/repository/docker/llamastack/distribution-together/general) | [Guide](./together/) | remote::together | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
| Fireworks | [llamastack/distribution-fireworks](https://hub.docker.com/repository/docker/llamastack/distribution-fireworks/general) | [Guide](./fireworks/) | remote::fireworks | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
|
@ -1,4 +1,4 @@
|
|||
name: local-bedrock-conda-example
|
||||
name: bedrock
|
||||
distribution_spec:
|
||||
description: Use Amazon Bedrock APIs.
|
||||
providers:
|
|
@ -1,4 +1,4 @@
|
|||
name: local-databricks
|
||||
name: databricks
|
||||
distribution_spec:
|
||||
description: Use Databricks for running LLM inference
|
||||
providers:
|
||||
|
@ -7,4 +7,4 @@ distribution_spec:
|
|||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
image_type: conda
|
55
distributions/fireworks/README.md
Normal file
55
distributions/fireworks/README.md
Normal file
|
@ -0,0 +1,55 @@
|
|||
# Fireworks Distribution
|
||||
|
||||
The `llamastack/distribution-` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::fireworks | meta-reference | meta-reference | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have an hosted endpoint at Fireworks with API Key.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/fireworks
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Fireworks URL server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inferenc
|
||||
api_key: <optional api key>
|
||||
```
|
||||
|
||||
### (Alternative) TGI server + llama stack run (Single Node GPU)
|
||||
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-fireworks --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Fireworks URL server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inference
|
||||
api_key: <optional api key>
|
||||
```
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```bash
|
||||
llama stack build --config ./build.yaml
|
||||
# -- modify run.yaml to a valid Fireworks server endpoint
|
||||
llama stack run ./run.yaml
|
||||
```
|
|
@ -1,4 +1,4 @@
|
|||
name: local-fireworks
|
||||
name: fireworks
|
||||
distribution_spec:
|
||||
description: Use Fireworks.ai for running LLM inference
|
||||
providers:
|
||||
|
@ -7,4 +7,4 @@ distribution_spec:
|
|||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
image_type: docker
|
18
distributions/fireworks/compose.yaml
Normal file
18
distributions/fireworks/compose.yaml
Normal file
|
@ -0,0 +1,18 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-fireworks
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/llamastack-run-fireworks.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-fireworks.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
46
distributions/fireworks/run.yaml
Normal file
46
distributions/fireworks/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: fireworks0
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inference
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
|
@ -1,4 +1,4 @@
|
|||
name: local-hf-endpoint
|
||||
name: hf-endpoint
|
||||
distribution_spec:
|
||||
description: "Like local, but use Hugging Face Inference Endpoints for running LLM inference.\nSee https://hf.co/docs/api-endpoints."
|
||||
providers:
|
|
@ -1,4 +1,4 @@
|
|||
name: local-hf-serverless
|
||||
name: hf-serverless
|
||||
distribution_spec:
|
||||
description: "Like local, but use Hugging Face Inference API (serverless) for running LLM inference.\nSee https://hf.co/docs/api-inference."
|
||||
providers:
|
28
distributions/meta-reference-gpu/README.md
Normal file
28
distributions/meta-reference-gpu/README.md
Normal file
|
@ -0,0 +1,28 @@
|
|||
# Meta Reference Distribution
|
||||
|
||||
The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | meta-reference | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Start the Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a local server with access to your GPU.
|
||||
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
To download and start running a pre-built docker container, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
### Alternative (Build and start distribution locally via conda)
|
||||
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on building locally via conda and starting up a meta-reference distribution.
|
|
@ -1,10 +1,13 @@
|
|||
name: local
|
||||
name: meta-reference-gpu
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference
|
||||
memory:
|
||||
- meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
image_type: docker
|
|
@ -1,19 +1,19 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:42:33.690666'
|
||||
image_name: local-gpu
|
||||
docker_image: local-gpu
|
||||
conda_env: null
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- memory
|
||||
- inference
|
||||
- agents
|
||||
- shields
|
||||
- safety
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
model: Llama3.1-8B-Instruct
|
||||
|
@ -22,17 +22,22 @@ providers:
|
|||
max_seq_len: 4096
|
||||
max_batch_size: 1
|
||||
safety:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield: null
|
||||
prompt_guard_shield: null
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
|
@ -40,6 +45,6 @@ providers:
|
|||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
91
distributions/ollama/README.md
Normal file
91
distributions/ollama/README.md
Normal file
|
@ -0,0 +1,91 @@
|
|||
# Ollama Distribution
|
||||
|
||||
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |---------------- |---------------- |---------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::ollama | meta-reference | remote::pgvector, remote::chroma | remote::ollama | meta-reference |
|
||||
|
||||
|
||||
### Start a Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a Ollama server with access to your GPU.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/ollama/gpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
You will see outputs similar to following ---
|
||||
```
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:41 | 200 | 226.841µs | ::1 | GET "/api/ps"
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:42 | 200 | 60.908µs | ::1 | GET "/api/ps"
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
[llamastack] | Resolved 12 providers
|
||||
[llamastack] | inner-inference => ollama0
|
||||
[llamastack] | models => __routing_table__
|
||||
[llamastack] | inference => __autorouted__
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This will start an ollama server with CPU only, please see [Ollama Documentations](https://github.com/ollama/ollama) for serving models on CPU only.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/ollama/cpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
### (Alternative) ollama run + llama stack Run
|
||||
|
||||
If you wish to separately spin up a Ollama server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### Start Ollama server.
|
||||
- Please check the [Ollama Documentations](https://github.com/ollama/ollama) for more details.
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
**Via CLI**
|
||||
```
|
||||
ollama run <model_id>
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to Ollama server
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./gpu/run.yaml:/root/llamastack-run-ollama.yaml --gpus=all distribution-ollama --yaml_config /root/llamastack-run-ollama.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Ollama endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
```
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```
|
||||
llama stack build --config ./build.yaml
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
13
distributions/ollama/build.yaml
Normal file
13
distributions/ollama/build.yaml
Normal file
|
@ -0,0 +1,13 @@
|
|||
name: ollama
|
||||
distribution_spec:
|
||||
description: Use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory:
|
||||
- meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
30
distributions/ollama/cpu/compose.yaml
Normal file
30
distributions/ollama/cpu/compose.yaml
Normal file
|
@ -0,0 +1,30 @@
|
|||
services:
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
|
||||
ports:
|
||||
- "11434:11434"
|
||||
command: []
|
||||
llamastack:
|
||||
depends_on:
|
||||
- ollama
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
volumes:
|
||||
ollama:
|
|
@ -1,35 +1,39 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:42:07.505267'
|
||||
image_name: local-cpu
|
||||
docker_image: local-cpu
|
||||
conda_env: null
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- inference
|
||||
- models
|
||||
- memory
|
||||
- safety
|
||||
- shields
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: remote::ollama
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
host: localhost
|
||||
port: 6000
|
||||
url: http://127.0.0.1:14343
|
||||
safety:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield: null
|
||||
prompt_guard_shield: null
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
|
@ -37,6 +41,6 @@ providers:
|
|||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
48
distributions/ollama/gpu/compose.yaml
Normal file
48
distributions/ollama/gpu/compose.yaml
Normal file
|
@ -0,0 +1,48 @@
|
|||
services:
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
|
||||
ports:
|
||||
- "11434:11434"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
llamastack-local-cpu:
|
||||
depends_on:
|
||||
- ollama
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/llamastack-run-ollama.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-ollama.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
volumes:
|
||||
ollama:
|
46
distributions/ollama/gpu/run.yaml
Normal file
46
distributions/ollama/gpu/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
94
distributions/tgi/README.md
Normal file
94
distributions/tgi/README.md
Normal file
|
@ -0,0 +1,94 @@
|
|||
# TGI Distribution
|
||||
|
||||
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Start the Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a TGI server with access to your GPU.
|
||||
|
||||
|
||||
```
|
||||
$ cd llama_stack/distribution/docker/tgi
|
||||
$ ls
|
||||
compose.yaml tgi-run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have an hosted endpoint compatible with TGI server.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/tgi/cpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
Replace <ENTER_YOUR_TGI_HOSTED_ENDPOINT> in `run.yaml` file with your TGI endpoint.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
|
||||
```
|
||||
|
||||
### (Alternative) TGI server + llama stack run (Single Node GPU)
|
||||
|
||||
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### (optional) Start TGI server locally
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
|
||||
|
||||
```
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
|
||||
```
|
||||
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack-local-cpu --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```bash
|
||||
llama stack build --config ./build.yaml
|
||||
# -- start a TGI server endpoint
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
13
distributions/tgi/build.yaml
Normal file
13
distributions/tgi/build.yaml
Normal file
|
@ -0,0 +1,13 @@
|
|||
name: tgi
|
||||
distribution_spec:
|
||||
description: Use TGI for running LLM inference
|
||||
providers:
|
||||
inference: remote::tgi
|
||||
memory:
|
||||
- meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
33
distributions/tgi/cpu/compose.yaml
Normal file
33
distributions/tgi/cpu/compose.yaml
Normal file
|
@ -0,0 +1,33 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- "5009:5009"
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
runtime: nvidia
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
llamastack:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
46
distributions/tgi/cpu/run.yaml
Normal file
46
distributions/tgi/cpu/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
55
distributions/tgi/gpu/compose.yaml
Normal file
55
distributions/tgi/gpu/compose.yaml
Normal file
|
@ -0,0 +1,55 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- "5009:5009"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
llamastack:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to TGI run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for TGI server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
46
distributions/tgi/gpu/run.yaml
Normal file
46
distributions/tgi/gpu/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
68
distributions/together/README.md
Normal file
68
distributions/together/README.md
Normal file
|
@ -0,0 +1,68 @@
|
|||
# Together Distribution
|
||||
|
||||
### Connect to a Llama Stack Together Endpoint
|
||||
- You may connect to a hosted endpoint `https://llama-stack.together.ai`, serving a Llama Stack distribution
|
||||
|
||||
The `llamastack/distribution-together` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::together | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have an hosted endpoint at Together with API Key.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/together
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Together URL server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: <optional api key>
|
||||
```
|
||||
|
||||
### (Alternative) TGI server + llama stack run (Single Node GPU)
|
||||
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-together --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Together URL server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: <optional api key>
|
||||
```
|
||||
|
||||
Together distribution comes with weaviate as Memory provider. We also need to configure the remote weaviate API key and URL in `run.yaml` to get memory API.
|
||||
```
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: remote::weaviate
|
||||
config:
|
||||
weaviate_api_key: <ENTER_WEAVIATE_API_KEY>
|
||||
weaviate_cluster_url: <ENTER_WEAVIATE_CLUSTER_URL>
|
||||
```
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```bash
|
||||
llama stack build --config ./build.yaml
|
||||
# -- modify run.yaml to a valid Together server endpoint
|
||||
llama stack run ./run.yaml
|
||||
```
|
|
@ -1,10 +1,10 @@
|
|||
name: local-together
|
||||
name: together
|
||||
distribution_spec:
|
||||
description: Use Together.ai for running LLM inference
|
||||
providers:
|
||||
inference: remote::together
|
||||
memory: meta-reference
|
||||
memory: remote::weaviate
|
||||
safety: remote::together
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
image_type: docker
|
18
distributions/together/compose.yaml
Normal file
18
distributions/together/compose.yaml
Normal file
|
@ -0,0 +1,18 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-together
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/llamastack-run-together.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-together.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
42
distributions/together/run.yaml
Normal file
42
distributions/together/run.yaml
Normal file
|
@ -0,0 +1,42 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: together0
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
safety:
|
||||
- provider_id: together0
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: remote::weaviate
|
||||
config:
|
||||
weaviate_api_key: <ENTER_WEAVIATE_API_KEY>
|
||||
weaviate_cluster_url: <ENTER_WEAVIATE_CLUSTER_URL>
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
|
@ -1,4 +1,4 @@
|
|||
name: local-vllm
|
||||
name: vllm
|
||||
distribution_spec:
|
||||
description: Like local, but use vLLM for running LLM inference
|
||||
providers:
|
||||
|
@ -7,4 +7,4 @@ distribution_spec:
|
|||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
image_type: conda
|
20
docs/Makefile
Normal file
20
docs/Makefile
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = _build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
BIN
docs/_static/llama-stack-logo.png
vendored
Normal file
BIN
docs/_static/llama-stack-logo.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 70 KiB |
BIN
docs/_static/llama-stack.png
vendored
Normal file
BIN
docs/_static/llama-stack.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 71 KiB |
270
docs/building_distro.md
Normal file
270
docs/building_distro.md
Normal file
|
@ -0,0 +1,270 @@
|
|||
# Building a Llama Stack Distribution
|
||||
|
||||
This guide will walk you through the steps to get started with building a Llama Stack distributiom from scratch with your choice of API providers. Please see the [Getting Started Guide](./getting_started.md) if you just want the basic steps to start a Llama Stack distribution.
|
||||
|
||||
## Step 1. Build
|
||||
In the following steps, imagine we'll be working with a `Meta-Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
```
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): 8b-instruct
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/8b-instruct-build.yaml
|
||||
```
|
||||
|
||||
**Ollama (optional)**
|
||||
|
||||
If you plan to use Ollama for inference, you'll need to install the server [via these instructions](https://ollama.com/download).
|
||||
|
||||
|
||||
#### Building from templates
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
```
|
||||
llama stack build --list-templates
|
||||
```
|
||||
|
||||

|
||||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
```
|
||||
llama stack build --template local-tgi --name my-tgi-stack
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template local-tgi --name my-tgi-stack
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml
|
||||
You may now run `llama stack configure my-tgi-stack` or `llama stack configure ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml`
|
||||
```
|
||||
|
||||
#### Building from config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
|
||||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
```
|
||||
|
||||
```
|
||||
llama stack build --config llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
```
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker --name docker-0
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
...
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
```
|
||||
|
||||
|
||||
## Step 2. Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <name> | <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
|
||||
```
|
||||
$ llama stack configure 8b-instruct
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Meta-Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/8b-instruct-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
## Step 3. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run 8b-instruct
|
||||
```
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
|
||||
```
|
||||
$ llama stack run 8b-instruct
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/8b-instruct-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
||||
## Step 4. Test with Client
|
||||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-stack pip package will work
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
||||
This will run the chat completion client and query the distribution’s /inference/chat_completion API.
|
||||
|
||||
Here is an example output:
|
||||
```
|
||||
User>hello world, write me a 2 sentence poem about the moon
|
||||
Assistant> Here's a 2-sentence poem about the moon:
|
||||
|
||||
The moon glows softly in the midnight sky,
|
||||
A beacon of wonder, as it passes by.
|
||||
```
|
||||
|
||||
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
|
||||
|
||||
```
|
||||
python -m llama_stack.apis.safety.client localhost 5000
|
||||
```
|
||||
|
||||
|
||||
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
41
docs/developer_cookbook.md
Normal file
41
docs/developer_cookbook.md
Normal file
|
@ -0,0 +1,41 @@
|
|||
# Llama Stack Developer Cookbook
|
||||
|
||||
Based on your developer needs, below are references to guides to help you get started.
|
||||
|
||||
### Hosted Llama Stack Endpoint
|
||||
* Developer Need: I want to connect to a Llama Stack endpoint to build my applications.
|
||||
* Effort: 1min
|
||||
* Guide:
|
||||
- Checkout our [DeepLearning course](https://www.deeplearning.ai/short-courses/introducing-multimodal-llama-3-2) on building with Llama Stack apps on pre-hosted Llama Stack endpoint.
|
||||
|
||||
|
||||
### Local meta-reference Llama Stack Server
|
||||
* Developer Need: I want to start a local Llama Stack server with my GPU using meta-reference implementations.
|
||||
* Effort: 5min
|
||||
* Guide:
|
||||
- Please see our [Getting Started Guide](./getting_started.md) on starting up a meta-reference Llama Stack server.
|
||||
|
||||
### Llama Stack Server with Remote Providers
|
||||
* Developer need: I want a Llama Stack distribution with a remote provider.
|
||||
* Effort: 10min
|
||||
* Guide
|
||||
- Please see our [Distributions Guide](../distributions/) on starting up distributions with remote providers.
|
||||
|
||||
|
||||
### On-Device (iOS) Llama Stack
|
||||
* Developer Need: I want to use Llama Stack on-Device
|
||||
* Effort: 1.5hr
|
||||
* Guide:
|
||||
- Please see our [iOS Llama Stack SDK](../llama_stack/providers/impls/ios/inference) implementations
|
||||
|
||||
### Assemble your own Llama Stack Distribution
|
||||
* Developer Need: I want to assemble my own distribution with API providers to my likings
|
||||
* Effort: 30min
|
||||
* Guide
|
||||
- Please see our [Building Distribution](./building_distro.md) guide for assembling your own Llama Stack distribution with your choice of API providers.
|
||||
|
||||
### Adding a New API Provider
|
||||
* Developer Need: I want to add a new API provider to Llama Stack.
|
||||
* Effort: 3hr
|
||||
* Guide
|
||||
- Please see our [Adding a New API Provider](./new_api_provider.md) guide for adding a new API provider.
|
|
@ -43,11 +43,9 @@
|
|||
"For this purpose, we will directly work with pre-built docker containers and use the python SDK\n",
|
||||
"```\n",
|
||||
"$ git clone https://github.com/meta-llama/llama-stack-apps.git\n",
|
||||
"\n",
|
||||
"$ cd llama-stack-apps\n",
|
||||
"$ yes | conda create -n stack-test python=3.10 \n",
|
||||
"$ conda activate stack-test\n",
|
||||
"\n",
|
||||
"$ pip install llama_stack llama_stack_client\n",
|
||||
"```\n",
|
||||
"This will install `llama_stack` and `llama_stack_client` packages. \n",
|
||||
|
|
|
@ -1,45 +1,9 @@
|
|||
# llama-stack
|
||||
|
||||
[](https://pypi.org/project/llama-stack/)
|
||||
[](https://discord.gg/llama-stack)
|
||||
|
||||
This repository contains the specifications and implementations of the APIs which are part of the Llama Stack.
|
||||
|
||||
The Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. These blocks span the entire development lifecycle: from model training and fine-tuning, through product evaluation, to invoking AI agents in production. Beyond definition, we're developing open-source versions and partnering with cloud providers, ensuring developers can assemble AI solutions using consistent, interlocking pieces across platforms. The ultimate goal is to accelerate innovation in the AI space.
|
||||
|
||||
The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.
|
||||
|
||||
|
||||
## APIs
|
||||
|
||||
The Llama Stack consists of the following set of APIs:
|
||||
|
||||
- Inference
|
||||
- Safety
|
||||
- Memory
|
||||
- Agentic System
|
||||
- Evaluation
|
||||
- Post Training
|
||||
- Synthetic Data Generation
|
||||
- Reward Scoring
|
||||
|
||||
Each of the APIs themselves is a collection of REST endpoints.
|
||||
|
||||
## API Providers
|
||||
|
||||
A Provider is what makes the API real -- they provide the actual implementation backing the API.
|
||||
|
||||
As an example, for Inference, we could have the implementation be backed by open source libraries like `[ torch | vLLM | TensorRT ]` as possible options.
|
||||
|
||||
A provider can also be just a pointer to a remote REST service -- for example, cloud providers or dedicated inference providers could serve these APIs.
|
||||
|
||||
|
||||
## Llama Stack Distribution
|
||||
|
||||
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
|
||||
# Getting Started with Llama Stack
|
||||
|
||||
This guide will walk you though the steps to get started on end-to-end flow for LlamaStack. This guide mainly focuses on getting started with building a LlamaStack distribution, and starting up a LlamaStack server. Please see our [documentations](../README.md) on what you can do with Llama Stack, and [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) on examples apps built with Llama Stack.
|
||||
|
||||
## Installation
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
You can install this repository as a [package](https://pypi.org/project/llama-stack/) with `pip install llama-stack`
|
||||
|
||||
|
@ -57,26 +21,39 @@ cd llama-stack
|
|||
$CONDA_PREFIX/bin/pip install -e .
|
||||
```
|
||||
|
||||
# Getting Started
|
||||
For what you can do with the Llama CLI, please refer to [CLI Reference](./cli_reference.md).
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
## Starting Up Llama Stack Server
|
||||
#### Starting up server via docker
|
||||
|
||||
This guides allows you to quickly get started with building and running a Llama Stack server in < 5 minutes!
|
||||
We provide 2 pre-built Docker image of Llama Stack distribution, which can be found in the following links.
|
||||
- [llamastack-local-gpu](https://hub.docker.com/repository/docker/llamastack/llamastack-local-gpu/general)
|
||||
- This is a packaged version with our local meta-reference implementations, where you will be running inference locally with downloaded Llama model checkpoints.
|
||||
- [llamastack-local-cpu](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general)
|
||||
- This is a lite version with remote inference where you can hook up to your favourite remote inference framework (e.g. ollama, fireworks, together, tgi) for running inference without GPU.
|
||||
|
||||
You may also checkout this [notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) for trying out out demo scripts.
|
||||
|
||||
## Quick Cheatsheet
|
||||
|
||||
#### Via docker
|
||||
> [!NOTE]
|
||||
> For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama --gpus=all llamastack-local-gpu
|
||||
export LLAMA_CHECKPOINT_DIR=~/.llama
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
#### Via conda
|
||||
To download and start running a pre-built docker container, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama --gpus=all llamastack/llamastack-local-gpu
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Pro Tip: We may use `docker compose up` for starting up a distribution with remote providers (e.g. TGI) using [llamastack-local-cpu](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general). You can checkout [these scripts](../distributions/) to help you get started.
|
||||
|
||||
#### Build->Configure->Run Llama Stack server via conda
|
||||
You may also build a LlamaStack distribution from scratch, configure it, and start running the distribution. This is useful for developing on LlamaStack.
|
||||
|
||||
**`llama stack build`**
|
||||
- You'll be prompted to enter build information interactively.
|
||||
```
|
||||
|
@ -183,243 +160,7 @@ INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
|||
```
|
||||
|
||||
|
||||
## Step 1. Build
|
||||
In the following steps, imagine we'll be working with a `Meta-Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
```
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): 8b-instruct
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/8b-instruct-build.yaml
|
||||
```
|
||||
|
||||
**Ollama (optional)**
|
||||
|
||||
If you plan to use Ollama for inference, you'll need to install the server [via these instructions](https://ollama.com/download).
|
||||
|
||||
|
||||
#### Building from templates
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
```
|
||||
llama stack build --list-templates
|
||||
```
|
||||
|
||||

|
||||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
```
|
||||
llama stack build --template local-tgi --name my-tgi-stack
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template local-tgi --name my-tgi-stack
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml
|
||||
You may now run `llama stack configure my-tgi-stack` or `llama stack configure ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml`
|
||||
```
|
||||
|
||||
#### Building from config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
|
||||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
```
|
||||
|
||||
```
|
||||
llama stack build --config llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
```
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker --name docker-0
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
...
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
```
|
||||
|
||||
|
||||
## Step 2. Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <name> | <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
|
||||
```
|
||||
$ llama stack configure 8b-instruct
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Meta-Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/8b-instruct-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
## Step 3. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run 8b-instruct
|
||||
```
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
|
||||
```
|
||||
$ llama stack run 8b-instruct
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/8b-instruct-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
||||
## Step 4. Test with Client
|
||||
## Testing with client
|
||||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
|
@ -445,4 +186,11 @@ Similarly you can test safety (if you configured llama-guard and/or prompt-guard
|
|||
python -m llama_stack.apis.safety.client localhost 5000
|
||||
```
|
||||
|
||||
|
||||
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
||||
|
||||
|
||||
## Advanced Guides
|
||||
Please see our [Building a LLama Stack Distribution](./building_distro.md) guide for more details on how to assemble your own Llama Stack Distribution.
|
||||
|
|
35
docs/make.bat
Normal file
35
docs/make.bat
Normal file
|
@ -0,0 +1,35 @@
|
|||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=.
|
||||
set BUILDDIR=_build
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.https://www.sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
26
docs/new_api_provider.md
Normal file
26
docs/new_api_provider.md
Normal file
|
@ -0,0 +1,26 @@
|
|||
# Developer Guide: Adding a New API Provider
|
||||
|
||||
This guide contains references to walk you through adding a new API provider.
|
||||
|
||||
### Adding a new API provider
|
||||
1. First, decide which API your provider falls into (e.g. Inference, Safety, Agents, Memory).
|
||||
2. Decide whether your provider is a remote provider, or inline implmentation. A remote provider is a provider that makes a remote request to an service. An inline provider is a provider where implementation is executed locally. Checkout the examples, and follow the structure to add your own API provider. Please find the following code pointers:
|
||||
|
||||
- [Inference Remote Adapter](../llama_stack/providers/adapters/inference/)
|
||||
- [Inference Inline Provider](../llama_stack/providers/impls/)
|
||||
|
||||
3. [Build a Llama Stack distribution](./building_distro.md) with your API provider.
|
||||
4. Test your code!
|
||||
|
||||
### Testing your newly added API providers
|
||||
|
||||
1. Start with an _integration test_ for your provider. That means we will instantiate the real provider, pass it real configuration and if it is a remote service, we will actually hit the remote service. We **strongly** discourage mocking for these tests at the provider level. Llama Stack is first and foremost about integration so we need to make sure stuff works end-to-end. See [llama_stack/providers/tests/inference/test_inference.py](../llama_stack/providers/tests/inference/test_inference.py) for an example.
|
||||
|
||||
2. In addition, if you want to unit test functionality within your provider, feel free to do so. You can find some tests in `tests/` but they aren't well supported so far.
|
||||
|
||||
3. Test with a client-server Llama Stack setup. (a) Start a Llama Stack server with your own distribution which includes the new provider. (b) Send a client request to the server. See `llama_stack/apis/<api>/client.py` for how this is done. These client scripts can serve as lightweight tests.
|
||||
|
||||
You can find more complex client scripts [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) repo. Note down which scripts works and do not work with your distribution.
|
||||
|
||||
### Submit your PR
|
||||
After you have fully tested your newly added API provider, submit a PR with the attached test plan. You must have a Test Plan in the summary section of your PR.
|
3
docs/requirements.txt
Normal file
3
docs/requirements.txt
Normal file
|
@ -0,0 +1,3 @@
|
|||
sphinx
|
||||
myst-parser
|
||||
linkify
|
|
@ -21,7 +21,7 @@
|
|||
"info": {
|
||||
"title": "[DRAFT] Llama Stack Specification",
|
||||
"version": "0.0.1",
|
||||
"description": "This is the specification of the llama stack that provides\n a set of endpoints and their corresponding interfaces that are tailored to\n best leverage Llama Models. The specification is still in draft and subject to change.\n Generated at 2024-10-10 15:29:56.831109"
|
||||
"description": "This is the specification of the llama stack that provides\n a set of endpoints and their corresponding interfaces that are tailored to\n best leverage Llama Models. The specification is still in draft and subject to change.\n Generated at 2024-10-18 20:48:17.730988"
|
||||
},
|
||||
"servers": [
|
||||
{
|
||||
|
@ -2830,8 +2830,11 @@
|
|||
"CompletionResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"completion_message": {
|
||||
"$ref": "#/components/schemas/CompletionMessage"
|
||||
"content": {
|
||||
"type": "string"
|
||||
},
|
||||
"stop_reason": {
|
||||
"$ref": "#/components/schemas/StopReason"
|
||||
},
|
||||
"logprobs": {
|
||||
"type": "array",
|
||||
|
@ -2842,7 +2845,8 @@
|
|||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"completion_message"
|
||||
"content",
|
||||
"stop_reason"
|
||||
],
|
||||
"title": "Completion response."
|
||||
},
|
||||
|
@ -6075,49 +6079,49 @@
|
|||
],
|
||||
"tags": [
|
||||
{
|
||||
"name": "Evaluations"
|
||||
},
|
||||
{
|
||||
"name": "Inspect"
|
||||
"name": "Models"
|
||||
},
|
||||
{
|
||||
"name": "RewardScoring"
|
||||
},
|
||||
{
|
||||
"name": "Datasets"
|
||||
},
|
||||
{
|
||||
"name": "Models"
|
||||
},
|
||||
{
|
||||
"name": "Telemetry"
|
||||
},
|
||||
{
|
||||
"name": "PostTraining"
|
||||
},
|
||||
{
|
||||
"name": "SyntheticDataGeneration"
|
||||
},
|
||||
{
|
||||
"name": "BatchInference"
|
||||
},
|
||||
{
|
||||
"name": "Inference"
|
||||
},
|
||||
{
|
||||
"name": "Agents"
|
||||
},
|
||||
{
|
||||
"name": "Memory"
|
||||
},
|
||||
{
|
||||
"name": "Safety"
|
||||
"name": "MemoryBanks"
|
||||
},
|
||||
{
|
||||
"name": "Shields"
|
||||
},
|
||||
{
|
||||
"name": "MemoryBanks"
|
||||
"name": "SyntheticDataGeneration"
|
||||
},
|
||||
{
|
||||
"name": "Inference"
|
||||
},
|
||||
{
|
||||
"name": "Inspect"
|
||||
},
|
||||
{
|
||||
"name": "BatchInference"
|
||||
},
|
||||
{
|
||||
"name": "Memory"
|
||||
},
|
||||
{
|
||||
"name": "Datasets"
|
||||
},
|
||||
{
|
||||
"name": "Agents"
|
||||
},
|
||||
{
|
||||
"name": "PostTraining"
|
||||
},
|
||||
{
|
||||
"name": "Telemetry"
|
||||
},
|
||||
{
|
||||
"name": "Safety"
|
||||
},
|
||||
{
|
||||
"name": "Evaluations"
|
||||
},
|
||||
{
|
||||
"name": "BuiltinTool",
|
||||
|
|
|
@ -501,14 +501,17 @@ components:
|
|||
CompletionResponse:
|
||||
additionalProperties: false
|
||||
properties:
|
||||
completion_message:
|
||||
$ref: '#/components/schemas/CompletionMessage'
|
||||
content:
|
||||
type: string
|
||||
logprobs:
|
||||
items:
|
||||
$ref: '#/components/schemas/TokenLogProbs'
|
||||
type: array
|
||||
stop_reason:
|
||||
$ref: '#/components/schemas/StopReason'
|
||||
required:
|
||||
- completion_message
|
||||
- content
|
||||
- stop_reason
|
||||
title: Completion response.
|
||||
type: object
|
||||
CompletionResponseStreamChunk:
|
||||
|
@ -2507,7 +2510,7 @@ info:
|
|||
description: "This is the specification of the llama stack that provides\n \
|
||||
\ a set of endpoints and their corresponding interfaces that are tailored\
|
||||
\ to\n best leverage Llama Models. The specification is still in\
|
||||
\ draft and subject to change.\n Generated at 2024-10-10 15:29:56.831109"
|
||||
\ draft and subject to change.\n Generated at 2024-10-18 20:48:17.730988"
|
||||
title: '[DRAFT] Llama Stack Specification'
|
||||
version: 0.0.1
|
||||
jsonSchemaDialect: https://json-schema.org/draft/2020-12/schema
|
||||
|
@ -3712,21 +3715,21 @@ security:
|
|||
servers:
|
||||
- url: http://any-hosted-llama-stack.com
|
||||
tags:
|
||||
- name: Evaluations
|
||||
- name: Inspect
|
||||
- name: RewardScoring
|
||||
- name: Datasets
|
||||
- name: Models
|
||||
- name: Telemetry
|
||||
- name: PostTraining
|
||||
- name: SyntheticDataGeneration
|
||||
- name: BatchInference
|
||||
- name: Inference
|
||||
- name: Agents
|
||||
- name: Memory
|
||||
- name: Safety
|
||||
- name: Shields
|
||||
- name: RewardScoring
|
||||
- name: MemoryBanks
|
||||
- name: Shields
|
||||
- name: SyntheticDataGeneration
|
||||
- name: Inference
|
||||
- name: Inspect
|
||||
- name: BatchInference
|
||||
- name: Memory
|
||||
- name: Datasets
|
||||
- name: Agents
|
||||
- name: PostTraining
|
||||
- name: Telemetry
|
||||
- name: Safety
|
||||
- name: Evaluations
|
||||
- description: <SchemaDefinition schemaRef="#/components/schemas/BuiltinTool" />
|
||||
name: BuiltinTool
|
||||
- description: <SchemaDefinition schemaRef="#/components/schemas/CompletionMessage"
|
||||
|
|
485
docs/source/cli_reference.md
Normal file
485
docs/source/cli_reference.md
Normal file
|
@ -0,0 +1,485 @@
|
|||
# Llama CLI Reference
|
||||
|
||||
The `llama` CLI tool helps you setup and use the Llama Stack & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
## Subcommands
|
||||
1. `download`: `llama` cli tools supports downloading the model from Meta or Hugging Face.
|
||||
2. `model`: Lists available models and their properties.
|
||||
3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this in Step 3 below.
|
||||
|
||||
## Sample Usage
|
||||
|
||||
```
|
||||
llama --help
|
||||
```
|
||||
<pre style="font-family: monospace;">
|
||||
usage: llama [-h] {download,model,stack} ...
|
||||
|
||||
Welcome to the Llama CLI
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
subcommands:
|
||||
{download,model,stack}
|
||||
</pre>
|
||||
|
||||
## Step 1. Get the models
|
||||
|
||||
You first need to have models downloaded locally.
|
||||
|
||||
To download any model you need the **Model Descriptor**.
|
||||
This can be obtained by running the command
|
||||
```
|
||||
llama model list
|
||||
```
|
||||
|
||||
You should see a table like this:
|
||||
|
||||
<pre style="font-family: monospace;">
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Model Descriptor | Hugging Face Repo | Context Length |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
| Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K |
|
||||
+----------------------------------+------------------------------------------+----------------+
|
||||
</pre>
|
||||
|
||||
To download models, you can use the llama download command.
|
||||
|
||||
### Downloading from [Meta](https://llama.meta.com/llama-downloads/)
|
||||
|
||||
Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from [here](https://llama.meta.com/docs/getting_the_models/meta/)
|
||||
|
||||
Download the required checkpoints using the following commands:
|
||||
```bash
|
||||
# download the 8B model, this can be run on a single GPU
|
||||
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL
|
||||
|
||||
# you can also get the 70B model, this will require 8 GPUs however
|
||||
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL
|
||||
|
||||
# llama-agents have safety enabled by default. For this, you will need
|
||||
# safety models -- Llama-Guard and Prompt-Guard
|
||||
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
|
||||
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL
|
||||
```
|
||||
|
||||
### Downloading from [Hugging Face](https://huggingface.co/meta-llama)
|
||||
|
||||
Essentially, the same commands above work, just replace `--source meta` with `--source huggingface`.
|
||||
|
||||
```bash
|
||||
llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
|
||||
|
||||
llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
|
||||
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
|
||||
```
|
||||
|
||||
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
|
||||
|
||||
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
|
||||
|
||||
### Downloading via Ollama
|
||||
|
||||
If you're already using ollama, we also have a supported Llama Stack distribution `local-ollama` and you can continue to use ollama for managing model downloads.
|
||||
|
||||
```
|
||||
ollama pull llama3.1:8b-instruct-fp16
|
||||
ollama pull llama3.1:70b-instruct-fp16
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Only the above two models are currently supported by Ollama.
|
||||
|
||||
|
||||
## Step 2: Understand the models
|
||||
The `llama model` command helps you explore the model’s interface.
|
||||
|
||||
### 2.1 Subcommands
|
||||
1. `download`: Download the model from different sources. (meta, huggingface)
|
||||
2. `list`: Lists all the models available for download with hardware requirements to deploy the models.
|
||||
3. `prompt-format`: Show llama model message formats.
|
||||
4. `describe`: Describes all the properties of the model.
|
||||
|
||||
### 2.2 Sample Usage
|
||||
|
||||
`llama model <subcommand> <options>`
|
||||
|
||||
```
|
||||
llama model --help
|
||||
```
|
||||
<pre style="font-family: monospace;">
|
||||
usage: llama model [-h] {download,list,prompt-format,describe} ...
|
||||
|
||||
Work with llama models
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
model_subcommands:
|
||||
{download,list,prompt-format,describe}
|
||||
</pre>
|
||||
|
||||
You can use the describe command to know more about a model:
|
||||
```
|
||||
llama model describe -m Llama3.2-3B-Instruct
|
||||
```
|
||||
### 2.3 Describe
|
||||
|
||||
<pre style="font-family: monospace;">
|
||||
+-----------------------------+----------------------------------+
|
||||
| Model | Llama3.2-3B-Instruct |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Hugging Face ID | meta-llama/Llama-3.2-3B-Instruct |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Description | Llama 3.2 3b instruct model |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Context Length | 128K tokens |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Weights format | bf16 |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Model params.json | { |
|
||||
| | "dim": 3072, |
|
||||
| | "n_layers": 28, |
|
||||
| | "n_heads": 24, |
|
||||
| | "n_kv_heads": 8, |
|
||||
| | "vocab_size": 128256, |
|
||||
| | "ffn_dim_multiplier": 1.0, |
|
||||
| | "multiple_of": 256, |
|
||||
| | "norm_eps": 1e-05, |
|
||||
| | "rope_theta": 500000.0, |
|
||||
| | "use_scaled_rope": true |
|
||||
| | } |
|
||||
+-----------------------------+----------------------------------+
|
||||
| Recommended sampling params | { |
|
||||
| | "strategy": "top_p", |
|
||||
| | "temperature": 1.0, |
|
||||
| | "top_p": 0.9, |
|
||||
| | "top_k": 0 |
|
||||
| | } |
|
||||
+-----------------------------+----------------------------------+
|
||||
</pre>
|
||||
### 2.4 Prompt Format
|
||||
You can even run `llama model prompt-format` see all of the templates and their tokens:
|
||||
|
||||
```
|
||||
llama model prompt-format -m Llama3.2-3B-Instruct
|
||||
```
|
||||

|
||||
|
||||
|
||||
|
||||
You will be shown a Markdown formatted description of the model interface and how prompts / messages are formatted for various scenarios.
|
||||
|
||||
**NOTE**: Outputs in terminal are color printed to show special tokens.
|
||||
|
||||
|
||||
## Step 3: Building, and Configuring Llama Stack Distributions
|
||||
|
||||
- Please see our [Getting Started](getting_started.md) guide for more details on how to build and start a Llama Stack distribution.
|
||||
|
||||
### Step 3.1 Build
|
||||
In the following steps, imagine we'll be working with a `Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
```
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-llama-stack
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/my-local-llama-stack-build.yaml
|
||||
```
|
||||
|
||||
#### Building from templates
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
```
|
||||
llama stack build --list-templates
|
||||
```
|
||||
|
||||

|
||||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
```
|
||||
llama stack build --template local-tgi --name my-tgi-stack
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template local-tgi --name my-tgi-stack
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml
|
||||
You may now run `llama stack configure my-tgi-stack` or `llama stack configure ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml`
|
||||
```
|
||||
|
||||
#### Building from config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
|
||||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
```
|
||||
|
||||
```
|
||||
llama stack build --config llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
```
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker --name docker-0
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
...
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
```
|
||||
|
||||
|
||||
### Step 3.2 Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <name> | <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
|
||||
```
|
||||
$ llama stack configure ~/.llama/distributions/conda/8b-instruct-build.yaml
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/8b-instruct-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
### Step 3.3 Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
|
||||
```
|
||||
$ llama stack run ~/.llama/builds/local/conda/8b-instruct.yaml
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/8b-instruct-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
||||
### Step 3.4 Test with Client
|
||||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-stack pip package will work
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
||||
This will run the chat completion client and query the distribution’s /inference/chat_completion API.
|
||||
|
||||
Here is an example output:
|
||||
```
|
||||
User>hello world, write me a 2 sentence poem about the moon
|
||||
Assistant> Here's a 2-sentence poem about the moon:
|
||||
|
||||
The moon glows softly in the midnight sky,
|
||||
A beacon of wonder, as it passes by.
|
||||
```
|
||||
|
||||
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
|
||||
|
||||
```
|
||||
python -m llama_stack.apis.safety.client localhost 5000
|
||||
```
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
53
docs/source/conf.py
Normal file
53
docs/source/conf.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# For the full list of built-in configuration values, see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
|
||||
|
||||
project = "llama-stack"
|
||||
copyright = "2024, Meta"
|
||||
author = "Meta"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
||||
|
||||
extensions = ["myst_parser"]
|
||||
|
||||
templates_path = ["_templates"]
|
||||
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
|
||||
myst_enable_extensions = [
|
||||
"amsmath",
|
||||
"attrs_inline",
|
||||
"colon_fence",
|
||||
"deflist",
|
||||
"dollarmath",
|
||||
"fieldlist",
|
||||
"html_admonition",
|
||||
"html_image",
|
||||
# "linkify",
|
||||
"replacements",
|
||||
"smartquotes",
|
||||
"strikethrough",
|
||||
"substitution",
|
||||
"tasklist",
|
||||
]
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
|
||||
|
||||
html_theme = "alabaster"
|
||||
html_theme_options = {
|
||||
"canonical_url": "https://github.com/meta-llama/llama-stack",
|
||||
}
|
||||
|
||||
html_static_path = ["../_static"]
|
||||
html_logo = "../_static/llama-stack-logo.png"
|
430
docs/source/getting_started.md
Normal file
430
docs/source/getting_started.md
Normal file
|
@ -0,0 +1,430 @@
|
|||
# Getting Started
|
||||
|
||||
This guide will walk you though the steps to get started on end-to-end flow for LlamaStack. This guide mainly focuses on getting started with building a LlamaStack distribution, and starting up a LlamaStack server. Please see our [documentations](https://github.com/meta-llama/llama-stack/README.md) on what you can do with Llama Stack, and [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) on examples apps built with Llama Stack.
|
||||
|
||||
## Installation
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package.
|
||||
|
||||
You can install this repository as a [package](https://pypi.org/project/llama-stack/) with `pip install llama-stack`
|
||||
|
||||
If you want to install from source:
|
||||
|
||||
```bash
|
||||
mkdir -p ~/local
|
||||
cd ~/local
|
||||
git clone git@github.com:meta-llama/llama-stack.git
|
||||
|
||||
conda create -n stack python=3.10
|
||||
conda activate stack
|
||||
|
||||
cd llama-stack
|
||||
$CONDA_PREFIX/bin/pip install -e .
|
||||
```
|
||||
|
||||
For what you can do with the Llama CLI, please refer to [CLI Reference](./cli_reference.md).
|
||||
|
||||
## Quick Starting Llama Stack Server
|
||||
|
||||
### Starting up server via docker
|
||||
|
||||
We provide 2 pre-built Docker image of Llama Stack distribution, which can be found in the following links.
|
||||
- [llamastack-local-gpu](https://hub.docker.com/repository/docker/llamastack/llamastack-local-gpu/general)
|
||||
- This is a packaged version with our local meta-reference implementations, where you will be running inference locally with downloaded Llama model checkpoints.
|
||||
- [llamastack-local-cpu](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general)
|
||||
- This is a lite version with remote inference where you can hook up to your favourite remote inference framework (e.g. ollama, fireworks, together, tgi) for running inference without GPU.
|
||||
|
||||
> [!NOTE]
|
||||
> For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.
|
||||
```
|
||||
export LLAMA_CHECKPOINT_DIR=~/.llama
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
To download and start running a pre-built docker container, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama --gpus=all llamastack/llamastack-local-gpu
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Pro Tip: We may use `docker compose up` for starting up a distribution with remote providers (e.g. TGI) using [llamastack-local-cpu](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general). You can checkout [these scripts](https://github.com/meta-llama/llama-stack/llama_stack/distribution/docker/README.md) to help you get started.
|
||||
|
||||
### Build->Configure->Run Llama Stack server via conda
|
||||
You may also build a LlamaStack distribution from scratch, configure it, and start running the distribution. This is useful for developing on LlamaStack.
|
||||
|
||||
**`llama stack build`**
|
||||
- You'll be prompted to enter build information interactively.
|
||||
```
|
||||
llama stack build
|
||||
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-stack
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-stack/my-local-stack-build.yaml
|
||||
You can now run `llama stack configure my-local-stack`
|
||||
```
|
||||
|
||||
**`llama stack configure`**
|
||||
- Run `llama stack configure <name>` with the name you have previously defined in `build` step.
|
||||
```
|
||||
llama stack configure <name>
|
||||
```
|
||||
- You will be prompted to enter configurations for your Llama Stack
|
||||
|
||||
```
|
||||
$ llama stack configure my-local-stack
|
||||
|
||||
Could not find my-local-stack. Trying conda build name instead...
|
||||
Configuring API `inference`...
|
||||
=== Configuring provider `meta-reference` for API inference...
|
||||
Enter value for model (default: Llama3.1-8B-Instruct) (required):
|
||||
Do you want to configure quantization? (y/n): n
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (default: 4096) (required):
|
||||
Enter value for max_batch_size (default: 1) (required):
|
||||
|
||||
Configuring API `safety`...
|
||||
=== Configuring provider `meta-reference` for API safety...
|
||||
Do you want to configure llama_guard_shield? (y/n): n
|
||||
Do you want to configure prompt_guard_shield? (y/n): n
|
||||
|
||||
Configuring API `agents`...
|
||||
=== Configuring provider `meta-reference` for API agents...
|
||||
Enter `type` for persistence_store (options: redis, sqlite, postgres) (default: sqlite):
|
||||
|
||||
Configuring SqliteKVStoreConfig:
|
||||
Enter value for namespace (optional):
|
||||
Enter value for db_path (default: /home/xiyan/.llama/runtime/kvstore.db) (required):
|
||||
|
||||
Configuring API `memory`...
|
||||
=== Configuring provider `meta-reference` for API memory...
|
||||
> Please enter the supported memory bank type your provider has for memory: vector
|
||||
|
||||
Configuring API `telemetry`...
|
||||
=== Configuring provider `meta-reference` for API telemetry...
|
||||
|
||||
> YAML configuration has been written to ~/.llama/builds/conda/my-local-stack-run.yaml.
|
||||
You can now run `llama stack run my-local-stack --port PORT`
|
||||
```
|
||||
|
||||
**`llama stack run`**
|
||||
- Run `llama stack run <name>` with the name you have previously defined.
|
||||
```
|
||||
llama stack run my-local-stack
|
||||
|
||||
...
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
...
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /inference/embeddings
|
||||
Serving POST /memory_banks/create
|
||||
Serving DELETE /memory_bank/documents/delete
|
||||
Serving DELETE /memory_banks/drop
|
||||
Serving GET /memory_bank/documents/get
|
||||
Serving GET /memory_banks/get
|
||||
Serving POST /memory_bank/insert
|
||||
Serving GET /memory_banks/list
|
||||
Serving POST /memory_bank/query
|
||||
Serving POST /memory_bank/update
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Serving GET /telemetry/get_trace
|
||||
Serving POST /telemetry/log_event
|
||||
Listening on :::5000
|
||||
INFO: Started server process [587053]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
### End-to-end flow of building, configuring, running, and testing a Distribution
|
||||
|
||||
#### Step 1. Build
|
||||
In the following steps, imagine we'll be working with a `Meta-Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
```
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): 8b-instruct
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/8b-instruct-build.yaml
|
||||
```
|
||||
|
||||
**Ollama (optional)**
|
||||
|
||||
If you plan to use Ollama for inference, you'll need to install the server [via these instructions](https://ollama.com/download).
|
||||
|
||||
|
||||
#### Building from templates
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
```
|
||||
llama stack build --list-templates
|
||||
```
|
||||
|
||||

|
||||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
```
|
||||
llama stack build --template local-tgi --name my-tgi-stack
|
||||
```
|
||||
|
||||
```
|
||||
$ llama stack build --template local-tgi --name my-tgi-stack
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml
|
||||
You may now run `llama stack configure my-tgi-stack` or `llama stack configure ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml`
|
||||
```
|
||||
|
||||
#### Building from config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
|
||||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
||||
```
|
||||
|
||||
```
|
||||
llama stack build --config llama_stack/distribution/templates/local-ollama-build.yaml
|
||||
```
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker --name docker-0
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
...
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
```
|
||||
|
||||
|
||||
### Step 2. Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <name> | <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
|
||||
```
|
||||
$ llama stack configure 8b-instruct
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Meta-Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/8b-instruct-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
### Step 3. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run 8b-instruct
|
||||
```
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
|
||||
```
|
||||
$ llama stack run 8b-instruct
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/8b-instruct-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
||||
### Step 4. Test with Client
|
||||
Once the server is setup, we can test it with a client to see the example outputs.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-stack pip package will work
|
||||
|
||||
python -m llama_stack.apis.inference.client localhost 5000
|
||||
```
|
||||
|
||||
This will run the chat completion client and query the distribution’s /inference/chat_completion API.
|
||||
|
||||
Here is an example output:
|
||||
```
|
||||
User>hello world, write me a 2 sentence poem about the moon
|
||||
Assistant> Here's a 2-sentence poem about the moon:
|
||||
|
||||
The moon glows softly in the midnight sky,
|
||||
A beacon of wonder, as it passes by.
|
||||
```
|
||||
|
||||
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
|
||||
|
||||
```
|
||||
python -m llama_stack.apis.safety.client localhost 5000
|
||||
```
|
||||
|
||||
|
||||
Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from [python](https://github.com/meta-llama/llama-stack-client-python), [node](https://github.com/meta-llama/llama-stack-client-node), [swift](https://github.com/meta-llama/llama-stack-client-swift), and [kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) programming languages to quickly build your applications.
|
||||
|
||||
You can find more example scripts with client SDKs to talk with the Llama Stack server in our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repo.
|
40
docs/source/index.md
Normal file
40
docs/source/index.md
Normal file
|
@ -0,0 +1,40 @@
|
|||
# llama-stack documentation
|
||||
|
||||
Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. It empowers developers building agentic applications by giving them options to operate in various environments (on-prem, cloud, single-node, on-device) while relying on a standard API interface and the same DevEx that is certified by Meta.
|
||||
|
||||
The Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. These blocks span the entire development lifecycle: from model training and fine-tuning, through product evaluation, to building and running AI agents in production. Beyond definition, we are building providers for the Llama Stack APIs. These were developing open-source versions and partnering with providers, ensuring developers can assemble AI solutions using consistent, interlocking pieces across platforms. The ultimate goal is to accelerate innovation in the AI space.
|
||||
|
||||
The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.
|
||||
|
||||

|
||||
|
||||
## APIs
|
||||
|
||||
The Llama Stack consists of the following set of APIs:
|
||||
|
||||
- Inference
|
||||
- Safety
|
||||
- Memory
|
||||
- Agentic System
|
||||
- Evaluation
|
||||
- Post Training
|
||||
- Synthetic Data Generation
|
||||
- Reward Scoring
|
||||
Each of the APIs themselves is a collection of REST endpoints.
|
||||
|
||||
## API Providers
|
||||
|
||||
A Provider is what makes the API real -- they provide the actual implementation backing the API.
|
||||
|
||||
As an example, for Inference, we could have the implementation be backed by open source libraries like [ torch | vLLM | TensorRT ] as possible options.
|
||||
|
||||
A provider can also be just a pointer to a remote REST service -- for example, cloud providers or dedicated inference providers could serve these APIs.
|
||||
|
||||
## Distribution
|
||||
|
||||
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
|
||||
|
||||
```{toctree}
|
||||
cli_reference.md
|
||||
getting_started.md
|
||||
```
|
|
@ -421,10 +421,8 @@ class Agents(Protocol):
|
|||
agent_config: AgentConfig,
|
||||
) -> AgentCreateResponse: ...
|
||||
|
||||
# This method is not `async def` because it can result in either an
|
||||
# `AsyncGenerator` or a `AgentTurnCreateResponse` depending on the value of `stream`.
|
||||
@webmethod(route="/agents/turn/create")
|
||||
def create_agent_turn(
|
||||
async def create_agent_turn(
|
||||
self,
|
||||
agent_id: str,
|
||||
session_id: str,
|
||||
|
|
|
@ -67,14 +67,14 @@ class AgentsClient(Agents):
|
|||
response.raise_for_status()
|
||||
return AgentSessionCreateResponse(**response.json())
|
||||
|
||||
def create_agent_turn(
|
||||
async def create_agent_turn(
|
||||
self,
|
||||
request: AgentTurnCreateRequest,
|
||||
) -> AsyncGenerator:
|
||||
if request.stream:
|
||||
return self._stream_agent_turn(request)
|
||||
else:
|
||||
return self._nonstream_agent_turn(request)
|
||||
return await self._nonstream_agent_turn(request)
|
||||
|
||||
async def _stream_agent_turn(
|
||||
self, request: AgentTurnCreateRequest
|
||||
|
@ -126,7 +126,7 @@ async def _run_agent(
|
|||
|
||||
for content in user_prompts:
|
||||
cprint(f"User> {content}", color="white", attrs=["bold"])
|
||||
iterator = api.create_agent_turn(
|
||||
iterator = await api.create_agent_turn(
|
||||
AgentTurnCreateRequest(
|
||||
agent_id=create_response.agent_id,
|
||||
session_id=session_response.session_id,
|
||||
|
|
|
@ -180,5 +180,5 @@ class EventLogger:
|
|||
color="cyan",
|
||||
)
|
||||
|
||||
preivous_event_type = event_type
|
||||
previous_event_type = event_type
|
||||
previous_step_type = step_type
|
||||
|
|
|
@ -42,10 +42,10 @@ class InferenceClient(Inference):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -139,7 +139,8 @@ async def run_main(
|
|||
else:
|
||||
logprobs_config = None
|
||||
|
||||
iterator = client.chat_completion(
|
||||
assert stream, "Non streaming not supported here"
|
||||
iterator = await client.chat_completion(
|
||||
model=model,
|
||||
messages=[message],
|
||||
stream=stream,
|
||||
|
|
|
@ -88,7 +88,8 @@ class CompletionRequest(BaseModel):
|
|||
class CompletionResponse(BaseModel):
|
||||
"""Completion response."""
|
||||
|
||||
completion_message: CompletionMessage
|
||||
content: str
|
||||
stop_reason: StopReason
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
|
@ -113,7 +114,7 @@ class BatchCompletionRequest(BaseModel):
|
|||
class BatchCompletionResponse(BaseModel):
|
||||
"""Batch completion response."""
|
||||
|
||||
completion_message_batch: List[CompletionMessage]
|
||||
batch: List[CompletionResponse]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -165,7 +166,7 @@ class BatchChatCompletionRequest(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class BatchChatCompletionResponse(BaseModel):
|
||||
completion_message_batch: List[CompletionMessage]
|
||||
batch: List[ChatCompletionResponse]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -181,10 +182,8 @@ class ModelStore(Protocol):
|
|||
class Inference(Protocol):
|
||||
model_store: ModelStore
|
||||
|
||||
# This method is not `async def` because it can result in either an
|
||||
# `AsyncGenerator` or a `CompletionResponse` depending on the value of `stream`.
|
||||
@webmethod(route="/inference/completion")
|
||||
def completion(
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -196,7 +195,7 @@ class Inference(Protocol):
|
|||
# This method is not `async def` because it can result in either an
|
||||
# `AsyncGenerator` or a `ChatCompletionResponse` depending on the value of `stream`.
|
||||
@webmethod(route="/inference/chat_completion")
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
|
|
@ -92,6 +92,21 @@ async def run_main(host: str, port: int, stream: bool):
|
|||
response = await client.list_memory_banks()
|
||||
cprint(f"list_memory_banks response={response}", "green")
|
||||
|
||||
# register memory bank for the first time
|
||||
response = await client.register_memory_bank(
|
||||
VectorMemoryBankDef(
|
||||
identifier="test_bank2",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=512,
|
||||
overlap_size_in_tokens=64,
|
||||
)
|
||||
)
|
||||
cprint(f"register_memory_bank response={response}", "blue")
|
||||
|
||||
# list again after registering
|
||||
response = await client.list_memory_banks()
|
||||
cprint(f"list_memory_banks response={response}", "green")
|
||||
|
||||
|
||||
def main(host: str, port: int, stream: bool = True):
|
||||
asyncio.run(run_main(host, port, stream))
|
||||
|
|
|
@ -152,27 +152,29 @@ def run_download_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
|
|||
parser.error("Please provide a model id")
|
||||
return
|
||||
|
||||
prompt_guard = prompt_guard_model_sku()
|
||||
if args.model_id == prompt_guard.model_id:
|
||||
model = prompt_guard
|
||||
info = prompt_guard_download_info()
|
||||
else:
|
||||
model = resolve_model(args.model_id)
|
||||
if model is None:
|
||||
parser.error(f"Model {args.model_id} not found")
|
||||
return
|
||||
info = llama_meta_net_info(model)
|
||||
# Check if model_id is a comma-separated list
|
||||
model_ids = [model_id.strip() for model_id in args.model_id.split(",")]
|
||||
|
||||
if args.source == "huggingface":
|
||||
_hf_download(model, args.hf_token, args.ignore_patterns, parser)
|
||||
else:
|
||||
meta_url = args.meta_url
|
||||
if not meta_url:
|
||||
meta_url = input(
|
||||
"Please provide the signed URL you received via email after visiting https://www.llama.com/llama-downloads/ (e.g., https://llama3-1.llamameta.net/*?Policy...): "
|
||||
prompt_guard = prompt_guard_model_sku()
|
||||
for model_id in model_ids:
|
||||
if model_id == prompt_guard.model_id:
|
||||
model = prompt_guard
|
||||
info = prompt_guard_download_info()
|
||||
else:
|
||||
model = resolve_model(model_id)
|
||||
if model is None:
|
||||
parser.error(f"Model {model_id} not found")
|
||||
continue
|
||||
info = llama_meta_net_info(model)
|
||||
|
||||
if args.source == "huggingface":
|
||||
_hf_download(model, args.hf_token, args.ignore_patterns, parser)
|
||||
else:
|
||||
meta_url = args.meta_url or input(
|
||||
f"Please provide the signed URL for model {model_id} you received via email after visiting https://www.llama.com/llama-downloads/ (e.g., https://llama3-1.llamameta.net/*?Policy...): "
|
||||
)
|
||||
assert meta_url is not None and "llamameta.net" in meta_url
|
||||
_meta_download(model, meta_url, info)
|
||||
assert "llamameta.net" in meta_url
|
||||
_meta_download(model, meta_url, info)
|
||||
|
||||
|
||||
class ModelEntry(BaseModel):
|
||||
|
|
|
@ -13,7 +13,7 @@ from functools import lru_cache
|
|||
from pathlib import Path
|
||||
|
||||
TEMPLATES_PATH = (
|
||||
Path(os.path.relpath(__file__)).parent.parent.parent / "distribution" / "templates"
|
||||
Path(os.path.relpath(__file__)).parent.parent.parent.parent / "distributions"
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ special_pip_deps="$6"
|
|||
set -euo pipefail
|
||||
|
||||
build_name="$1"
|
||||
image_name="llamastack-$build_name"
|
||||
image_name="distribution-$build_name"
|
||||
docker_base=$2
|
||||
build_file_path=$3
|
||||
host_build_dir=$4
|
||||
|
|
|
@ -55,7 +55,7 @@ class ProviderWithSpec(Provider):
|
|||
|
||||
|
||||
# TODO: this code is not very straightforward to follow and needs one more round of refactoring
|
||||
async def resolve_impls_with_routing(run_config: StackRunConfig) -> Dict[Api, Any]:
|
||||
async def resolve_impls(run_config: StackRunConfig) -> Dict[Api, Any]:
|
||||
"""
|
||||
Does two things:
|
||||
- flatmaps, sorts and resolves the providers in dependency order
|
||||
|
|
|
@ -70,7 +70,7 @@ class InferenceRouter(Inference):
|
|||
async def register_model(self, model: ModelDef) -> None:
|
||||
await self.routing_table.register_model(model)
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -93,11 +93,11 @@ class InferenceRouter(Inference):
|
|||
)
|
||||
provider = self.routing_table.get_provider_impl(model)
|
||||
if stream:
|
||||
return (chunk async for chunk in provider.chat_completion(**params))
|
||||
return (chunk async for chunk in await provider.chat_completion(**params))
|
||||
else:
|
||||
return provider.chat_completion(**params)
|
||||
return await provider.chat_completion(**params)
|
||||
|
||||
def completion(
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -114,9 +114,9 @@ class InferenceRouter(Inference):
|
|||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return (chunk async for chunk in provider.completion(**params))
|
||||
return (chunk async for chunk in await provider.completion(**params))
|
||||
else:
|
||||
return provider.completion(**params)
|
||||
return await provider.completion(**params)
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
|
|
|
@ -87,8 +87,21 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
def get_provider_impl(
|
||||
self, routing_key: str, provider_id: Optional[str] = None
|
||||
) -> Any:
|
||||
def apiname_object():
|
||||
if isinstance(self, ModelsRoutingTable):
|
||||
return ("Inference", "model")
|
||||
elif isinstance(self, ShieldsRoutingTable):
|
||||
return ("Safety", "shield")
|
||||
elif isinstance(self, MemoryBanksRoutingTable):
|
||||
return ("Memory", "memory_bank")
|
||||
else:
|
||||
raise ValueError("Unknown routing table type")
|
||||
|
||||
if routing_key not in self.registry:
|
||||
raise ValueError(f"`{routing_key}` not registered")
|
||||
apiname, objname = apiname_object()
|
||||
raise ValueError(
|
||||
f"`{routing_key}` not registered. Make sure there is an {apiname} provider serving this {objname}."
|
||||
)
|
||||
|
||||
objs = self.registry[routing_key]
|
||||
for obj in objs:
|
||||
|
@ -110,10 +123,16 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
async def register_object(self, obj: RoutableObjectWithProvider):
|
||||
entries = self.registry.get(obj.identifier, [])
|
||||
for entry in entries:
|
||||
if entry.provider_id == obj.provider_id:
|
||||
print(f"`{obj.identifier}` already registered with `{obj.provider_id}`")
|
||||
if entry.provider_id == obj.provider_id or not obj.provider_id:
|
||||
print(
|
||||
f"`{obj.identifier}` already registered with `{entry.provider_id}`"
|
||||
)
|
||||
return
|
||||
|
||||
# if provider_id is not specified, we'll pick an arbitrary one from existing entries
|
||||
if not obj.provider_id and len(self.impls_by_provider_id) > 0:
|
||||
obj.provider_id = list(self.impls_by_provider_id.keys())[0]
|
||||
|
||||
if obj.provider_id not in self.impls_by_provider_id:
|
||||
raise ValueError(f"Provider `{obj.provider_id}` not found")
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ from llama_stack.providers.utils.telemetry.tracing import (
|
|||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.distribution.request_headers import set_request_provider_data
|
||||
from llama_stack.distribution.resolver import resolve_impls_with_routing
|
||||
from llama_stack.distribution.resolver import resolve_impls
|
||||
|
||||
from .endpoints import get_all_api_endpoints
|
||||
|
||||
|
@ -203,7 +203,7 @@ async def maybe_await(value):
|
|||
|
||||
async def sse_generator(event_gen):
|
||||
try:
|
||||
async for item in event_gen:
|
||||
async for item in await event_gen:
|
||||
yield create_sse_event(item)
|
||||
await asyncio.sleep(0.01)
|
||||
except asyncio.CancelledError:
|
||||
|
@ -276,7 +276,7 @@ def main(
|
|||
|
||||
app = FastAPI()
|
||||
|
||||
impls = asyncio.run(resolve_impls_with_routing(config))
|
||||
impls = asyncio.run(resolve_impls(config))
|
||||
if Api.telemetry in impls:
|
||||
setup_logger(impls[Api.telemetry])
|
||||
|
||||
|
|
|
@ -1,15 +0,0 @@
|
|||
name: local-cpu
|
||||
distribution_spec:
|
||||
description: remote inference + local safety/agents/memory
|
||||
docker_image: null
|
||||
providers:
|
||||
inference:
|
||||
- remote::ollama
|
||||
- remote::tgi
|
||||
- remote::together
|
||||
- remote::fireworks
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
memory: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
|
@ -1,11 +0,0 @@
|
|||
name: local-gpu
|
||||
distribution_spec:
|
||||
description: local meta reference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
memory: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
|
@ -1,10 +0,0 @@
|
|||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,10 +0,0 @@
|
|||
name: local-tgi
|
||||
distribution_spec:
|
||||
description: Like local, but use a TGI server for running LLM inference.
|
||||
providers:
|
||||
inference: remote::tgi
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -47,7 +47,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
|
||||
def completion(
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -283,7 +283,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
)
|
||||
return tool_config
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
|
|
@ -7,10 +7,11 @@
|
|||
from .config import DatabricksImplConfig
|
||||
from .databricks import DatabricksInferenceAdapter
|
||||
|
||||
|
||||
async def get_adapter_impl(config: DatabricksImplConfig, _deps):
|
||||
assert isinstance(
|
||||
config, DatabricksImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
impl = DatabricksInferenceAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
return impl
|
||||
|
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
@ -19,4 +18,4 @@ class DatabricksImplConfig(BaseModel):
|
|||
api_token: str = Field(
|
||||
default=None,
|
||||
description="The Databricks API token",
|
||||
)
|
||||
)
|
||||
|
|
|
@ -48,10 +48,17 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -77,14 +84,14 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request, client)
|
||||
return await self._nonstream_chat_completion(request, client)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: OpenAI
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
return process_chat_completion_response(request, r, self.formatter)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: OpenAI
|
||||
|
@ -98,7 +105,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
|
|
|
@ -51,7 +51,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def completion(
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -61,7 +61,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -87,14 +87,14 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request, client)
|
||||
return await self._nonstream_chat_completion(request, client)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Fireworks
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = await client.completion.acreate(**params)
|
||||
return process_chat_completion_response(request, r, self.formatter)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Fireworks
|
||||
|
@ -103,7 +103,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
|
||||
stream = client.completion.acreate(**params)
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
|
|
|
@ -23,9 +23,12 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
OpenAICompatCompletionResponse,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
)
|
||||
|
||||
OLLAMA_SUPPORTED_MODELS = {
|
||||
|
@ -33,7 +36,8 @@ OLLAMA_SUPPORTED_MODELS = {
|
|||
"Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
|
||||
"Llama3.2-1B-Instruct": "llama3.2:1b-instruct-fp16",
|
||||
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
|
||||
"Llama-Guard-3-8B": "xe/llamaguard3:latest",
|
||||
"Llama-Guard-3-8B": "llama-guard3:8b",
|
||||
"Llama-Guard-3-1B": "llama-guard3:1b",
|
||||
}
|
||||
|
||||
|
||||
|
@ -84,7 +88,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
return ret
|
||||
|
||||
def completion(
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -92,9 +96,66 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
request = CompletionRequest(
|
||||
model=model,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def chat_completion(
|
||||
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
||||
sampling_options = get_sampling_options(request)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
if sampling_options["max_tokens"] is not None:
|
||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||
return {
|
||||
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
||||
"prompt": completion_request_to_prompt(request, self.formatter),
|
||||
"options": sampling_options,
|
||||
"raw": True,
|
||||
"stream": request.stream,
|
||||
}
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.generate(**params)
|
||||
async for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["response"],
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
r = await self.client.generate(**params)
|
||||
assert isinstance(r, dict)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["response"],
|
||||
)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
return process_completion_response(response, self.formatter)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -118,7 +179,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request)
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
return {
|
||||
|
@ -143,7 +204,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
return process_chat_completion_response(request, response, self.formatter)
|
||||
return process_chat_completion_response(response, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
|
@ -163,7 +224,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
|
|
|
@ -66,7 +66,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def completion(
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -76,7 +76,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -101,7 +101,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request)
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
|
@ -116,7 +116,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
return process_chat_completion_response(request, response, self.formatter)
|
||||
return process_chat_completion_response(response, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
|
@ -135,7 +135,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
|
|
|
@ -64,7 +64,7 @@ class TogetherInferenceAdapter(
|
|||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -101,14 +101,14 @@ class TogetherInferenceAdapter(
|
|||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request, client)
|
||||
return await self._nonstream_chat_completion(request, client)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Together
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
return process_chat_completion_response(request, r, self.formatter)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Together
|
||||
|
@ -123,7 +123,7 @@ class TogetherInferenceAdapter(
|
|||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
|
|
15
llama_stack/providers/adapters/inference/vllm/__init__.py
Normal file
15
llama_stack/providers/adapters/inference/vllm/__init__.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import VLLMImplConfig
|
||||
from .vllm import VLLMInferenceAdapter
|
||||
|
||||
|
||||
async def get_adapter_impl(config: VLLMImplConfig, _deps):
|
||||
assert isinstance(config, VLLMImplConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = VLLMInferenceAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
22
llama_stack/providers/adapters/inference/vllm/config.py
Normal file
22
llama_stack/providers/adapters/inference/vllm/config.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VLLMImplConfig(BaseModel):
|
||||
url: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The URL for the vLLM model serving endpoint",
|
||||
)
|
||||
api_token: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The API token",
|
||||
)
|
152
llama_stack/providers/adapters/inference/vllm/vllm.py
Normal file
152
llama_stack/providers/adapters/inference/vllm/vllm.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import VLLMImplConfig
|
||||
|
||||
VLLM_SUPPORTED_MODELS = {
|
||||
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
|
||||
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
|
||||
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
|
||||
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
|
||||
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
|
||||
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
|
||||
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
|
||||
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
|
||||
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
|
||||
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
|
||||
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
|
||||
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
|
||||
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
|
||||
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
|
||||
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
|
||||
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
|
||||
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
|
||||
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
|
||||
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
|
||||
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
|
||||
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
|
||||
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
|
||||
}
|
||||
|
||||
|
||||
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||
def __init__(self, config: VLLMImplConfig) -> None:
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
self.client = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
raise ValueError("Model registration is not supported for vLLM models")
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
return [
|
||||
ModelDef(identifier=model.id, llama_model=model.id)
|
||||
for model in self.client.models.list()
|
||||
]
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
||||
raise NotImplementedError()
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
request = ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, self.client)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request, self.client)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: OpenAI
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
return process_chat_completion_response(request, r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: OpenAI
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
|
||||
# TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async
|
||||
# generator so this wrapper is not necessary?
|
||||
async def _to_async_generator():
|
||||
s = client.completions.create(**params)
|
||||
for chunk in s:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
return {
|
||||
"model": VLLM_SUPPORTED_MODELS[request.model],
|
||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
|
@ -424,7 +424,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
stop_reason = None
|
||||
|
||||
with tracing.span("inference"):
|
||||
async for chunk in self.inference_api.chat_completion(
|
||||
async for chunk in await self.inference_api.chat_completion(
|
||||
self.agent_config.model,
|
||||
input_messages,
|
||||
tools=self._get_tools(),
|
||||
|
|
|
@ -105,7 +105,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
session_id=session_id,
|
||||
)
|
||||
|
||||
def create_agent_turn(
|
||||
async def create_agent_turn(
|
||||
self,
|
||||
agent_id: str,
|
||||
session_id: str,
|
||||
|
|
|
@ -17,13 +17,22 @@ from llama_stack.providers.utils.inference import supported_inference_models
|
|||
|
||||
class MetaReferenceInferenceConfig(BaseModel):
|
||||
model: str = Field(
|
||||
default="Llama3.1-8B-Instruct",
|
||||
default="Llama3.2-3B-Instruct",
|
||||
description="Model descriptor from `llama model list`",
|
||||
)
|
||||
torch_seed: Optional[int] = None
|
||||
max_seq_len: int = 4096
|
||||
max_batch_size: int = 1
|
||||
|
||||
# when this is False, we assume that the distributed process group is setup by someone
|
||||
# outside of this code (e.g., when run inside `torchrun`). that is useful for clients
|
||||
# (including our testing code) who might be using llama-stack as a library.
|
||||
create_distributed_process_group: bool = True
|
||||
|
||||
# By default, the implementation will look at ~/.llama/checkpoints/<model> but you
|
||||
# can override by specifying the directory explicitly
|
||||
checkpoint_dir: Optional[str] = None
|
||||
|
||||
@field_validator("model")
|
||||
@classmethod
|
||||
def validate_model(cls, model: str) -> str:
|
||||
|
|
|
@ -23,11 +23,6 @@ from fairscale.nn.model_parallel.initialize import (
|
|||
)
|
||||
from llama_models.llama3.api.args import ModelArgs
|
||||
from llama_models.llama3.api.chat_format import ChatFormat, ModelInput
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
InterleavedTextMedia,
|
||||
Message,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.llama3.reference_impl.model import Transformer
|
||||
from llama_models.llama3.reference_impl.multimodal.model import (
|
||||
|
@ -38,7 +33,11 @@ from llama_models.sku_list import resolve_model
|
|||
from pydantic import BaseModel
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.distribution.utils.model_utils import model_local_dir
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_messages,
|
||||
)
|
||||
|
||||
from .config import MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
|
||||
|
||||
|
@ -98,7 +97,10 @@ class Llama:
|
|||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
start_time = time.time()
|
||||
ckpt_dir = model_checkpoint_dir(model)
|
||||
if config.checkpoint_dir:
|
||||
ckpt_dir = config.checkpoint_dir
|
||||
else:
|
||||
ckpt_dir = model_checkpoint_dir(model)
|
||||
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
|
@ -119,9 +121,7 @@ class Llama:
|
|||
**params,
|
||||
)
|
||||
|
||||
tokenizer_path = os.path.join(ckpt_dir, "tokenizer.model")
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
|
@ -138,7 +138,7 @@ class Llama:
|
|||
else:
|
||||
model = Transformer(model_args)
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
model = convert_to_quantized_model(model, config)
|
||||
model = convert_to_quantized_model(model, config, ckpt_dir)
|
||||
else:
|
||||
if torch.cuda.is_bf16_supported():
|
||||
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
|
||||
|
@ -170,14 +170,16 @@ class Llama:
|
|||
logprobs: bool = False,
|
||||
echo: bool = False,
|
||||
include_stop_token: bool = False,
|
||||
print_input_tokens: bool = False,
|
||||
) -> Generator:
|
||||
params = self.model.params
|
||||
|
||||
# input_tokens = [
|
||||
# self.formatter.vision_token if t == 128256 else t
|
||||
# for t in model_input.tokens
|
||||
# ]
|
||||
# cprint("Input to model -> " + self.tokenizer.decode(input_tokens), "red")
|
||||
if print_input_tokens:
|
||||
input_tokens = [
|
||||
self.formatter.vision_token if t == 128256 else t
|
||||
for t in model_input.tokens
|
||||
]
|
||||
cprint("Input to model -> " + self.tokenizer.decode(input_tokens), "red")
|
||||
prompt_tokens = [model_input.tokens]
|
||||
|
||||
bsz = 1
|
||||
|
@ -228,8 +230,7 @@ class Llama:
|
|||
ignore_index=pad_id,
|
||||
)
|
||||
|
||||
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
|
||||
|
||||
stop_tokens = torch.tensor(self.tokenizer.stop_tokens, device="cuda")
|
||||
for cur_pos in range(min_prompt_len, total_len):
|
||||
if is_vision:
|
||||
position_ids = torch.arange(
|
||||
|
@ -295,15 +296,12 @@ class Llama:
|
|||
if all(eos_reached):
|
||||
break
|
||||
|
||||
def text_completion(
|
||||
def completion(
|
||||
self,
|
||||
content: InterleavedTextMedia,
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
echo: bool = False,
|
||||
request: CompletionRequest,
|
||||
) -> Generator:
|
||||
sampling_params = request.sampling_params
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
|
@ -311,26 +309,25 @@ class Llama:
|
|||
):
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
model_input = self.formatter.encode_content(content)
|
||||
|
||||
model_input = self.formatter.encode_content(request.content)
|
||||
yield from self.generate(
|
||||
model_input=model_input,
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=logprobs,
|
||||
echo=echo,
|
||||
temperature=sampling_params.temperature,
|
||||
top_p=sampling_params.top_p,
|
||||
logprobs=bool(request.logprobs),
|
||||
include_stop_token=True,
|
||||
echo=False,
|
||||
)
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
messages: List[Message],
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
|
||||
request: ChatCompletionRequest,
|
||||
) -> Generator:
|
||||
messages = chat_completion_request_to_messages(request)
|
||||
|
||||
sampling_params = request.sampling_params
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
|
@ -341,12 +338,12 @@ class Llama:
|
|||
yield from self.generate(
|
||||
model_input=self.formatter.encode_dialog_prompt(
|
||||
messages,
|
||||
tool_prompt_format,
|
||||
request.tool_prompt_format,
|
||||
),
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=logprobs,
|
||||
temperature=sampling_params.temperature,
|
||||
top_p=sampling_params.top_p,
|
||||
logprobs=bool(request.logprobs),
|
||||
include_stop_token=True,
|
||||
)
|
||||
|
||||
|
|
|
@ -13,11 +13,9 @@ from llama_models.sku_list import resolve_model
|
|||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_messages,
|
||||
)
|
||||
|
||||
from .config import MetaReferenceInferenceConfig
|
||||
from .generation import Llama
|
||||
from .model_parallel import LlamaModelParallelGenerator
|
||||
|
||||
# there's a single model parallel process running serving the model. for now,
|
||||
|
@ -36,8 +34,11 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
|
||||
async def initialize(self) -> None:
|
||||
print(f"Loading model `{self.model.descriptor()}`")
|
||||
self.generator = LlamaModelParallelGenerator(self.config)
|
||||
self.generator.start()
|
||||
if self.config.create_distributed_process_group:
|
||||
self.generator = LlamaModelParallelGenerator(self.config)
|
||||
self.generator.start()
|
||||
else:
|
||||
self.generator = Llama.build(self.config)
|
||||
|
||||
async def register_model(self, model: ModelDef) -> None:
|
||||
raise ValueError("Dynamic model registration is not supported")
|
||||
|
@ -51,9 +52,21 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
]
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.generator.stop()
|
||||
if self.config.create_distributed_process_group:
|
||||
self.generator.stop()
|
||||
|
||||
def completion(
|
||||
def check_model(self, request) -> None:
|
||||
model = resolve_model(request.model)
|
||||
if model is None:
|
||||
raise RuntimeError(
|
||||
f"Unknown model: {request.model}, Run `llama model list`"
|
||||
)
|
||||
elif model.descriptor() != self.model.descriptor():
|
||||
raise RuntimeError(
|
||||
f"Model mismatch: {request.model} != {self.model.descriptor()}"
|
||||
)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -61,9 +74,114 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
||||
raise NotImplementedError()
|
||||
if logprobs:
|
||||
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
||||
|
||||
def chat_completion(
|
||||
request = CompletionRequest(
|
||||
model=model,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
self.check_model(request)
|
||||
|
||||
if request.stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
def impl():
|
||||
stop_reason = None
|
||||
|
||||
for token_result in self.generator.completion(request):
|
||||
if token_result.text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
elif token_result.text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
else:
|
||||
text = token_result.text
|
||||
|
||||
logprobs = None
|
||||
if stop_reason is None:
|
||||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs = [
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
]
|
||||
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
logprobs=logprobs if request.logprobs else None,
|
||||
)
|
||||
|
||||
if stop_reason is None:
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta="",
|
||||
stop_reason=StopReason.out_of_tokens,
|
||||
)
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
async with SEMAPHORE:
|
||||
for x in impl():
|
||||
yield x
|
||||
else:
|
||||
for x in impl():
|
||||
yield x
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
stop_reason = None
|
||||
|
||||
tokenizer = self.generator.formatter.tokenizer
|
||||
for token_result in self.generator.completion(request):
|
||||
tokens.append(token_result.token)
|
||||
|
||||
if token_result.token in tokenizer.stop_tokens:
|
||||
# not quite right semantically
|
||||
stop_reason = StopReason.end_of_turn
|
||||
|
||||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs.append(
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
content = self.generator.formatter.tokenizer.decode(tokens)
|
||||
return CompletionResponse(
|
||||
content=content,
|
||||
stop_reason=stop_reason,
|
||||
logprobs=logprobs if request.logprobs else None,
|
||||
)
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
async with SEMAPHORE:
|
||||
return impl()
|
||||
else:
|
||||
return impl()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
@ -88,43 +206,26 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
self.check_model(request)
|
||||
|
||||
model = resolve_model(request.model)
|
||||
if model is None:
|
||||
raise RuntimeError(
|
||||
f"Unknown model: {request.model}, Run `llama model list`"
|
||||
)
|
||||
elif model.descriptor() != self.model.descriptor():
|
||||
raise RuntimeError(
|
||||
f"Model mismatch: {request.model} != {self.model.descriptor()}"
|
||||
)
|
||||
|
||||
if SEMAPHORE.locked():
|
||||
raise RuntimeError("Only one concurrent request is supported")
|
||||
if self.config.create_distributed_process_group:
|
||||
if SEMAPHORE.locked():
|
||||
raise RuntimeError("Only one concurrent request is supported")
|
||||
|
||||
if request.stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request)
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
async with SEMAPHORE:
|
||||
messages = chat_completion_request_to_messages(request)
|
||||
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
stop_reason = None
|
||||
|
||||
for token_result in self.generator.chat_completion(
|
||||
messages=messages,
|
||||
temperature=request.sampling_params.temperature,
|
||||
top_p=request.sampling_params.top_p,
|
||||
max_gen_len=request.sampling_params.max_tokens,
|
||||
logprobs=request.logprobs,
|
||||
tool_prompt_format=request.tool_prompt_format,
|
||||
):
|
||||
for token_result in self.generator.chat_completion(request):
|
||||
tokens.append(token_result.token)
|
||||
|
||||
if token_result.text == "<|eot_id|>":
|
||||
|
@ -154,12 +255,16 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
logprobs=logprobs if request.logprobs else None,
|
||||
)
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
async with SEMAPHORE:
|
||||
return impl()
|
||||
else:
|
||||
return impl()
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
async with SEMAPHORE:
|
||||
messages = chat_completion_request_to_messages(request)
|
||||
|
||||
def impl():
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
|
@ -172,14 +277,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
stop_reason = None
|
||||
ipython = False
|
||||
|
||||
for token_result in self.generator.chat_completion(
|
||||
messages=messages,
|
||||
temperature=request.sampling_params.temperature,
|
||||
top_p=request.sampling_params.top_p,
|
||||
max_gen_len=request.sampling_params.max_tokens,
|
||||
logprobs=request.logprobs,
|
||||
tool_prompt_format=request.tool_prompt_format,
|
||||
):
|
||||
for token_result in self.generator.chat_completion(request):
|
||||
tokens.append(token_result.token)
|
||||
|
||||
if not ipython and token_result.text.startswith("<|python_tag|>"):
|
||||
|
@ -272,6 +370,14 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
)
|
||||
)
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
async with SEMAPHORE:
|
||||
for x in impl():
|
||||
yield x
|
||||
else:
|
||||
for x in impl():
|
||||
yield x
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -7,16 +7,17 @@
|
|||
import os
|
||||
from copy import deepcopy
|
||||
from functools import partial
|
||||
from typing import Generator, List, Optional
|
||||
from typing import Any, Generator
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message, ToolPromptFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from llama_stack.apis.inference import ChatCompletionRequest, CompletionRequest
|
||||
|
||||
from .config import MetaReferenceInferenceConfig
|
||||
from .generation import Llama, model_checkpoint_dir
|
||||
from .parallel_utils import InferenceArgs, ModelParallelProcessGroup
|
||||
from .parallel_utils import ModelParallelProcessGroup
|
||||
|
||||
|
||||
class ModelRunner:
|
||||
|
@ -24,15 +25,13 @@ class ModelRunner:
|
|||
self.llama = llama
|
||||
|
||||
# the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()`
|
||||
def __call__(self, task: InferenceArgs):
|
||||
return self.llama.chat_completion(
|
||||
task.messages,
|
||||
task.temperature,
|
||||
task.top_p,
|
||||
task.max_gen_len,
|
||||
task.logprobs,
|
||||
task.tool_prompt_format,
|
||||
)
|
||||
def __call__(self, req: Any):
|
||||
if isinstance(req, ChatCompletionRequest):
|
||||
return self.llama.chat_completion(req)
|
||||
elif isinstance(req, CompletionRequest):
|
||||
return self.llama.completion(req)
|
||||
else:
|
||||
raise ValueError(f"Unexpected task type {type(req)}")
|
||||
|
||||
|
||||
def init_model_cb(config: MetaReferenceInferenceConfig):
|
||||
|
@ -77,23 +76,18 @@ class LlamaModelParallelGenerator:
|
|||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
self.group.stop()
|
||||
|
||||
def chat_completion(
|
||||
def completion(
|
||||
self,
|
||||
messages: List[Message],
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
|
||||
request: CompletionRequest,
|
||||
) -> Generator:
|
||||
req_obj = InferenceArgs(
|
||||
messages=deepcopy(messages),
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
max_gen_len=max_gen_len,
|
||||
logprobs=logprobs or False,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
)
|
||||
|
||||
req_obj = deepcopy(request)
|
||||
gen = self.group.run_inference(req_obj)
|
||||
yield from gen
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
request: ChatCompletionRequest,
|
||||
) -> Generator:
|
||||
req_obj = deepcopy(request)
|
||||
gen = self.group.run_inference(req_obj)
|
||||
yield from gen
|
||||
|
|
|
@ -4,6 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, IAny, nc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import multiprocessing
|
||||
import os
|
||||
|
@ -11,10 +17,9 @@ import tempfile
|
|||
import time
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Callable, Generator, List, Literal, Optional, Union
|
||||
from typing import Callable, Generator, Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
import zmq
|
||||
|
||||
from fairscale.nn.model_parallel.initialize import (
|
||||
|
@ -23,25 +28,16 @@ from fairscale.nn.model_parallel.initialize import (
|
|||
get_model_parallel_src_rank,
|
||||
)
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message, ToolPromptFormat
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from torch.distributed.launcher.api import elastic_launch, LaunchConfig
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.apis.inference import ChatCompletionRequest, CompletionRequest
|
||||
|
||||
from .generation import TokenResult
|
||||
|
||||
|
||||
class InferenceArgs(BaseModel):
|
||||
messages: List[Message]
|
||||
temperature: float
|
||||
top_p: float
|
||||
max_gen_len: int
|
||||
logprobs: bool
|
||||
tool_prompt_format: ToolPromptFormat
|
||||
|
||||
|
||||
class ProcessingMessageName(str, Enum):
|
||||
ready_request = "ready_request"
|
||||
ready_response = "ready_response"
|
||||
|
@ -80,7 +76,7 @@ class TaskRequest(BaseModel):
|
|||
type: Literal[ProcessingMessageName.task_request] = (
|
||||
ProcessingMessageName.task_request
|
||||
)
|
||||
task: InferenceArgs
|
||||
task: Union[CompletionRequest, ChatCompletionRequest]
|
||||
|
||||
|
||||
class TaskResponse(BaseModel):
|
||||
|
@ -349,11 +345,13 @@ class ModelParallelProcessGroup:
|
|||
self.process.join()
|
||||
self.started = False
|
||||
|
||||
def run_inference(self, inference_args: InferenceArgs) -> Generator:
|
||||
def run_inference(
|
||||
self, req: Union[CompletionRequest, ChatCompletionRequest]
|
||||
) -> Generator:
|
||||
assert not self.running, "inference already running"
|
||||
|
||||
self.running = True
|
||||
self.request_socket.send(encode_msg(TaskRequest(task=inference_args)))
|
||||
self.request_socket.send(encode_msg(TaskRequest(task=req)))
|
||||
try:
|
||||
while True:
|
||||
obj_json = self.request_socket.recv()
|
||||
|
|
|
@ -13,9 +13,10 @@ from typing import Optional
|
|||
import torch
|
||||
|
||||
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
|
||||
|
||||
from llama_models.datatypes import CheckpointQuantizationFormat
|
||||
from llama_models.llama3.reference_impl.model import Transformer, TransformerBlock
|
||||
|
||||
from llama_models.sku_list import resolve_model
|
||||
from termcolor import cprint
|
||||
from torch import Tensor
|
||||
|
||||
|
@ -39,6 +40,7 @@ def swiglu_wrapper(
|
|||
def convert_to_quantized_model(
|
||||
model: Transformer,
|
||||
config: MetaReferenceQuantizedInferenceConfig,
|
||||
checkpoint_dir: str,
|
||||
fp8_activation_scale_ub: Optional[float] = 1200.0,
|
||||
) -> Transformer:
|
||||
if config.quantization.type == QuantizationType.bf16.value:
|
||||
|
@ -49,12 +51,14 @@ def convert_to_quantized_model(
|
|||
|
||||
from .fp8_impls import Fp8ScaledWeights, load_fp8, quantize_fp8
|
||||
|
||||
checkpoint = config.checkpoint_config.checkpoint
|
||||
llama_model = resolve_model(config.model)
|
||||
assert llama_model is not None, f"Model {config.model} not found"
|
||||
|
||||
# Move weights to GPU with quantization
|
||||
if checkpoint.quantization_format == CheckpointQuantizationFormat.fp8_mixed.value:
|
||||
if llama_model.quantization_format == CheckpointQuantizationFormat.fp8_mixed.value:
|
||||
cprint("Loading fp8 scales...", "yellow")
|
||||
fp8_scales_path = os.path.join(
|
||||
checkpoint.checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
assert os.path.isfile(
|
||||
fp8_scales_path
|
||||
|
|
|
@ -170,7 +170,7 @@ class LlamaGuardShield(ShieldBase):
|
|||
for i in range(1, len(messages)):
|
||||
if messages[i].role == messages[i - 1].role:
|
||||
raise ValueError(
|
||||
f"Messages must alternate between user and assistant. Message {i} has the same role as message {i-1}"
|
||||
f"Messages must alternate between user and assistant. Message {i} has the same role as message {i - 1}"
|
||||
)
|
||||
return messages
|
||||
|
||||
|
@ -184,7 +184,7 @@ class LlamaGuardShield(ShieldBase):
|
|||
|
||||
# TODO: llama-stack inference protocol has issues with non-streaming inference code
|
||||
content = ""
|
||||
async for chunk in self.inference_api.chat_completion(
|
||||
async for chunk in await self.inference_api.chat_completion(
|
||||
model=self.model,
|
||||
messages=[shield_input_message],
|
||||
stream=True,
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from .config import VLLMConfig
|
||||
|
|
|
@ -134,7 +134,7 @@ class VLLMInferenceImpl(ModelRegistryHelper, Inference):
|
|||
if self.engine:
|
||||
self.engine.shutdown_background_loop()
|
||||
|
||||
def completion(
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
|
@ -152,7 +152,7 @@ class VLLMInferenceImpl(ModelRegistryHelper, Inference):
|
|||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
def chat_completion(
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[Message],
|
||||
|
@ -189,7 +189,7 @@ class VLLMInferenceImpl(ModelRegistryHelper, Inference):
|
|||
if stream:
|
||||
return self._stream_chat_completion(request, results_generator)
|
||||
else:
|
||||
return self._nonstream_chat_completion(request, results_generator)
|
||||
return await self._nonstream_chat_completion(request, results_generator)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, results_generator: AsyncGenerator
|
||||
|
@ -207,7 +207,7 @@ class VLLMInferenceImpl(ModelRegistryHelper, Inference):
|
|||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
return process_chat_completion_response(request, response, self.formatter)
|
||||
return process_chat_completion_response(response, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, results_generator: AsyncGenerator
|
||||
|
@ -229,7 +229,7 @@ class VLLMInferenceImpl(ModelRegistryHelper, Inference):
|
|||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
|
|
|
@ -55,11 +55,20 @@ def available_providers() -> List[ProviderSpec]:
|
|||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="ollama",
|
||||
pip_packages=["ollama"],
|
||||
pip_packages=["ollama", "aiohttp"],
|
||||
config_class="llama_stack.providers.adapters.inference.ollama.OllamaImplConfig",
|
||||
module="llama_stack.providers.adapters.inference.ollama",
|
||||
),
|
||||
),
|
||||
# remote_provider_spec(
|
||||
# api=Api.inference,
|
||||
# adapter=AdapterSpec(
|
||||
# adapter_type="vllm",
|
||||
# pip_packages=["openai"],
|
||||
# module="llama_stack.providers.adapters.inference.vllm",
|
||||
# config_class="llama_stack.providers.adapters.inference.vllm.VLLMImplConfig",
|
||||
# ),
|
||||
# ),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
|
@ -31,4 +31,4 @@ providers:
|
|||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: /Users/ashwin/.llama/runtime/kvstore.db
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
|
|
|
@ -64,6 +64,24 @@ def search_query_messages():
|
|||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def attachment_message():
|
||||
return [
|
||||
UserMessage(
|
||||
content="I am attaching some documentation for Torchtune. Help me answer questions I will ask next.",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def query_attachment_messages():
|
||||
return [
|
||||
UserMessage(
|
||||
content="What are the top 5 topics that were explained? Only list succinct bullet points."
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_agent_turn(agents_settings, sample_messages):
|
||||
agents_impl = agents_settings["impl"]
|
||||
|
@ -98,7 +116,7 @@ async def test_create_agent_turn(agents_settings, sample_messages):
|
|||
)
|
||||
|
||||
turn_response = [
|
||||
chunk async for chunk in agents_impl.create_agent_turn(**turn_request)
|
||||
chunk async for chunk in await agents_impl.create_agent_turn(**turn_request)
|
||||
]
|
||||
|
||||
assert len(turn_response) > 0
|
||||
|
@ -123,6 +141,89 @@ async def test_create_agent_turn(agents_settings, sample_messages):
|
|||
assert len(final_event.turn.output_message.content) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_rag_agent_as_attachments(
|
||||
agents_settings, attachment_message, query_attachment_messages
|
||||
):
|
||||
urls = [
|
||||
"memory_optimizations.rst",
|
||||
"chat.rst",
|
||||
"llama3.rst",
|
||||
"datasets.rst",
|
||||
"qat_finetune.rst",
|
||||
"lora_finetune.rst",
|
||||
]
|
||||
|
||||
attachments = [
|
||||
Attachment(
|
||||
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
|
||||
mime_type="text/plain",
|
||||
)
|
||||
for i, url in enumerate(urls)
|
||||
]
|
||||
|
||||
agents_impl = agents_settings["impl"]
|
||||
|
||||
agent_config = AgentConfig(
|
||||
model=agents_settings["common_params"]["model"],
|
||||
instructions=agents_settings["common_params"]["instructions"],
|
||||
enable_session_persistence=True,
|
||||
sampling_params=SamplingParams(temperature=0.7, top_p=0.95),
|
||||
input_shields=[],
|
||||
output_shields=[],
|
||||
tools=[
|
||||
MemoryToolDefinition(
|
||||
memory_bank_configs=[],
|
||||
query_generator_config={
|
||||
"type": "default",
|
||||
"sep": " ",
|
||||
},
|
||||
max_tokens_in_context=4096,
|
||||
max_chunks=10,
|
||||
),
|
||||
],
|
||||
max_infer_iters=5,
|
||||
)
|
||||
|
||||
create_response = await agents_impl.create_agent(agent_config)
|
||||
agent_id = create_response.agent_id
|
||||
|
||||
# Create a session
|
||||
session_create_response = await agents_impl.create_agent_session(
|
||||
agent_id, "Test Session"
|
||||
)
|
||||
session_id = session_create_response.session_id
|
||||
|
||||
# Create and execute a turn
|
||||
turn_request = dict(
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
messages=attachment_message,
|
||||
attachments=attachments,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
turn_response = [
|
||||
chunk async for chunk in await agents_impl.create_agent_turn(**turn_request)
|
||||
]
|
||||
|
||||
assert len(turn_response) > 0
|
||||
|
||||
# Create a second turn querying the agent
|
||||
turn_request = dict(
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
messages=query_attachment_messages,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
turn_response = [
|
||||
chunk async for chunk in await agents_impl.create_agent_turn(**turn_request)
|
||||
]
|
||||
|
||||
assert len(turn_response) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_agent_turn_with_brave_search(
|
||||
agents_settings, search_query_messages
|
||||
|
@ -169,7 +270,7 @@ async def test_create_agent_turn_with_brave_search(
|
|||
)
|
||||
|
||||
turn_response = [
|
||||
chunk async for chunk in agents_impl.create_agent_turn(**turn_request)
|
||||
chunk async for chunk in await agents_impl.create_agent_turn(**turn_request)
|
||||
]
|
||||
|
||||
assert len(turn_response) > 0
|
||||
|
|
|
@ -4,6 +4,10 @@ providers:
|
|||
config:
|
||||
host: localhost
|
||||
port: 11434
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
model: Llama3.2-1B-Instruct
|
||||
- provider_id: test-tgi
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import itertools
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
@ -50,14 +51,17 @@ def get_expected_stop_reason(model: str):
|
|||
return StopReason.end_of_message if "Llama3.1" in model else StopReason.end_of_turn
|
||||
|
||||
|
||||
if "MODEL_IDS" not in os.environ:
|
||||
MODEL_IDS = [Llama_8B, Llama_3B]
|
||||
else:
|
||||
MODEL_IDS = os.environ["MODEL_IDS"].split(",")
|
||||
|
||||
|
||||
# This is going to create multiple Stack impls without tearing down the previous one
|
||||
# Fix that!
|
||||
@pytest_asyncio.fixture(
|
||||
scope="session",
|
||||
params=[
|
||||
{"model": Llama_8B},
|
||||
{"model": Llama_3B},
|
||||
],
|
||||
params=[{"model": m} for m in MODEL_IDS],
|
||||
ids=lambda d: d["model"],
|
||||
)
|
||||
async def inference_settings(request):
|
||||
|
@ -122,6 +126,48 @@ async def test_model_list(inference_settings):
|
|||
assert model_def.identifier == params["model"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion(inference_settings):
|
||||
inference_impl = inference_settings["impl"]
|
||||
params = inference_settings["common_params"]
|
||||
|
||||
provider = inference_impl.routing_table.get_provider_impl(params["model"])
|
||||
if provider.__provider_spec__.provider_type not in (
|
||||
"meta-reference",
|
||||
"remote::ollama",
|
||||
):
|
||||
pytest.skip("Other inference providers don't support completion() yet")
|
||||
|
||||
response = await inference_impl.completion(
|
||||
content="Roses are red,",
|
||||
stream=False,
|
||||
model=params["model"],
|
||||
sampling_params=SamplingParams(
|
||||
max_tokens=50,
|
||||
),
|
||||
)
|
||||
|
||||
assert isinstance(response, CompletionResponse)
|
||||
assert "violets are blue" in response.content
|
||||
|
||||
chunks = [
|
||||
r
|
||||
async for r in await inference_impl.completion(
|
||||
content="Roses are red,",
|
||||
stream=True,
|
||||
model=params["model"],
|
||||
sampling_params=SamplingParams(
|
||||
max_tokens=50,
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
|
||||
assert len(chunks) == 51
|
||||
last = chunks[-1]
|
||||
assert last.stop_reason == StopReason.out_of_tokens
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_chat_completion_non_streaming(inference_settings, sample_messages):
|
||||
inference_impl = inference_settings["impl"]
|
||||
|
@ -142,7 +188,7 @@ async def test_chat_completion_streaming(inference_settings, sample_messages):
|
|||
inference_impl = inference_settings["impl"]
|
||||
response = [
|
||||
r
|
||||
async for r in inference_impl.chat_completion(
|
||||
async for r in await inference_impl.chat_completion(
|
||||
messages=sample_messages,
|
||||
stream=True,
|
||||
**inference_settings["common_params"],
|
||||
|
@ -213,7 +259,7 @@ async def test_chat_completion_with_tool_calling_streaming(
|
|||
|
||||
response = [
|
||||
r
|
||||
async for r in inference_impl.chat_completion(
|
||||
async for r in await inference_impl.chat_completion(
|
||||
messages=messages,
|
||||
tools=[sample_tool_definition],
|
||||
stream=True,
|
||||
|
|
|
@ -2,8 +2,8 @@ providers:
|
|||
- provider_id: test-faiss
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
- provider_id: test-chroma
|
||||
provider_type: remote::chroma
|
||||
- provider_id: test-chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
host: localhost
|
||||
port: 6001
|
||||
|
|
|
@ -89,6 +89,30 @@ async def test_banks_list(memory_settings):
|
|||
assert len(response) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_banks_register(memory_settings):
|
||||
# NOTE: this needs you to ensure that you are starting from a clean state
|
||||
# but so far we don't have an unregister API unfortunately, so be careful
|
||||
banks_impl = memory_settings["memory_banks_impl"]
|
||||
bank = VectorMemoryBankDef(
|
||||
identifier="test_bank_no_provider",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=512,
|
||||
overlap_size_in_tokens=64,
|
||||
)
|
||||
|
||||
await banks_impl.register_memory_bank(bank)
|
||||
response = await banks_impl.list_memory_banks()
|
||||
assert isinstance(response, list)
|
||||
assert len(response) == 1
|
||||
|
||||
# register same memory bank with same id again will fail
|
||||
await banks_impl.register_memory_bank(bank)
|
||||
response = await banks_impl.list_memory_banks()
|
||||
assert isinstance(response, list)
|
||||
assert len(response) == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_documents(memory_settings, sample_documents):
|
||||
memory_impl = memory_settings["memory_impl"]
|
||||
|
|
|
@ -14,7 +14,7 @@ import yaml
|
|||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
|
||||
from llama_stack.distribution.request_headers import set_request_provider_data
|
||||
from llama_stack.distribution.resolver import resolve_impls_with_routing
|
||||
from llama_stack.distribution.resolver import resolve_impls
|
||||
|
||||
|
||||
async def resolve_impls_for_test(api: Api, deps: List[Api] = None):
|
||||
|
@ -36,7 +36,7 @@ async def resolve_impls_for_test(api: Api, deps: List[Api] = None):
|
|||
providers=chosen,
|
||||
)
|
||||
run_config = parse_and_maybe_upgrade_config(run_config)
|
||||
impls = await resolve_impls_with_routing(run_config)
|
||||
impls = await resolve_impls(run_config)
|
||||
|
||||
if "provider_data" in config_dict:
|
||||
provider_id = chosen[api.value][0].provider_id
|
||||
|
|
|
@ -34,6 +34,8 @@ def get_sampling_options(request: ChatCompletionRequest) -> dict:
|
|||
if params := request.sampling_params:
|
||||
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||
if getattr(params, attr):
|
||||
if attr == "max_tokens":
|
||||
options["num_predict"] = getattr(params, attr)
|
||||
options[attr] = getattr(params, attr)
|
||||
|
||||
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
|
||||
|
@ -49,27 +51,35 @@ def text_from_choice(choice) -> str:
|
|||
return choice.text
|
||||
|
||||
|
||||
def get_stop_reason(finish_reason: str) -> StopReason:
|
||||
if finish_reason in ["stop", "eos"]:
|
||||
return StopReason.end_of_turn
|
||||
elif finish_reason == "eom":
|
||||
return StopReason.end_of_message
|
||||
elif finish_reason == "length":
|
||||
return StopReason.out_of_tokens
|
||||
|
||||
return StopReason.out_of_tokens
|
||||
|
||||
|
||||
def process_completion_response(
|
||||
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
||||
) -> CompletionResponse:
|
||||
choice = response.choices[0]
|
||||
|
||||
return CompletionResponse(
|
||||
stop_reason=get_stop_reason(choice.finish_reason),
|
||||
content=choice.text,
|
||||
)
|
||||
|
||||
|
||||
def process_chat_completion_response(
|
||||
request: ChatCompletionRequest,
|
||||
response: OpenAICompatCompletionResponse,
|
||||
formatter: ChatFormat,
|
||||
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
||||
) -> ChatCompletionResponse:
|
||||
choice = response.choices[0]
|
||||
|
||||
stop_reason = None
|
||||
if reason := choice.finish_reason:
|
||||
if reason in ["stop", "eos"]:
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif reason == "eom":
|
||||
stop_reason = StopReason.end_of_message
|
||||
elif reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = formatter.decode_assistant_message_from_content(
|
||||
text_from_choice(choice), stop_reason
|
||||
text_from_choice(choice), get_stop_reason(choice.finish_reason)
|
||||
)
|
||||
return ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
|
@ -77,10 +87,45 @@ def process_chat_completion_response(
|
|||
)
|
||||
|
||||
|
||||
async def process_completion_stream_response(
|
||||
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
||||
) -> AsyncGenerator:
|
||||
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in stream:
|
||||
choice = chunk.choices[0]
|
||||
finish_reason = choice.finish_reason
|
||||
|
||||
if finish_reason:
|
||||
if finish_reason in ["stop", "eos", "eos_token"]:
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
|
||||
text = text_from_choice(choice)
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
|
||||
|
||||
async def process_chat_completion_stream_response(
|
||||
request: ChatCompletionRequest,
|
||||
stream: AsyncGenerator[OpenAICompatCompletionResponse, None],
|
||||
formatter: ChatFormat,
|
||||
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
||||
) -> AsyncGenerator:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
|
|
@ -23,6 +23,13 @@ from llama_models.sku_list import resolve_model
|
|||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
|
||||
def completion_request_to_prompt(
|
||||
request: CompletionRequest, formatter: ChatFormat
|
||||
) -> str:
|
||||
model_input = formatter.encode_content(request.content)
|
||||
return formatter.tokenizer.decode(model_input.tokens)
|
||||
|
||||
|
||||
def chat_completion_request_to_prompt(
|
||||
request: ChatCompletionRequest, formatter: ChatFormat
|
||||
) -> str:
|
||||
|
|
|
@ -152,7 +152,7 @@ def severity(levelname: str) -> LogSeverity:
|
|||
elif levelname == "INFO":
|
||||
return LogSeverity.INFO
|
||||
elif levelname == "WARNING":
|
||||
return LogSeverity.WARNING
|
||||
return LogSeverity.WARN
|
||||
elif levelname == "ERROR":
|
||||
return LogSeverity.ERROR
|
||||
elif levelname == "CRITICAL":
|
||||
|
|
|
@ -2,7 +2,7 @@ blobfile
|
|||
fire
|
||||
httpx
|
||||
huggingface-hub
|
||||
llama-models>=0.0.41
|
||||
llama-models>=0.0.43
|
||||
prompt-toolkit
|
||||
python-dotenv
|
||||
pydantic>=2
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue