Merge branch 'meta-llama:main' into qdrant

This commit is contained in:
Anush 2024-10-22 21:45:31 +05:30 committed by GitHub
commit 1575578446
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
101 changed files with 3310 additions and 722 deletions

View file

@ -47,7 +47,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
async def shutdown(self) -> None:
self.client.close()
def completion(
async def completion(
self,
model: str,
content: InterleavedTextMedia,
@ -283,7 +283,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
)
return tool_config
def chat_completion(
async def chat_completion(
self,
model: str,
messages: List[Message],

View file

@ -7,10 +7,11 @@
from .config import DatabricksImplConfig
from .databricks import DatabricksInferenceAdapter
async def get_adapter_impl(config: DatabricksImplConfig, _deps):
assert isinstance(
config, DatabricksImplConfig
), f"Unexpected config type: {type(config)}"
impl = DatabricksInferenceAdapter(config)
await impl.initialize()
return impl
return impl

View file

@ -4,7 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@ -19,4 +18,4 @@ class DatabricksImplConfig(BaseModel):
api_token: str = Field(
default=None,
description="The Databricks API token",
)
)

View file

@ -48,10 +48,17 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
async def shutdown(self) -> None:
pass
def completion(self, request: CompletionRequest) -> AsyncGenerator:
async def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError()
def chat_completion(
async def chat_completion(
self,
model: str,
messages: List[Message],
@ -77,14 +84,14 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
if stream:
return self._stream_chat_completion(request, client)
else:
return self._nonstream_chat_completion(request, client)
return await self._nonstream_chat_completion(request, client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
@ -98,7 +105,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
stream, self.formatter
):
yield chunk

View file

@ -51,7 +51,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
async def shutdown(self) -> None:
pass
def completion(
async def completion(
self,
model: str,
content: InterleavedTextMedia,
@ -61,7 +61,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
) -> AsyncGenerator:
raise NotImplementedError()
def chat_completion(
async def chat_completion(
self,
model: str,
messages: List[Message],
@ -87,14 +87,14 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
if stream:
return self._stream_chat_completion(request, client)
else:
return self._nonstream_chat_completion(request, client)
return await self._nonstream_chat_completion(request, client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
) -> ChatCompletionResponse:
params = self._get_params(request)
r = await client.completion.acreate(**params)
return process_chat_completion_response(request, r, self.formatter)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
@ -103,7 +103,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
stream = client.completion.acreate(**params)
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
stream, self.formatter
):
yield chunk

View file

@ -23,9 +23,12 @@ from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
)
OLLAMA_SUPPORTED_MODELS = {
@ -33,7 +36,8 @@ OLLAMA_SUPPORTED_MODELS = {
"Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
"Llama3.2-1B-Instruct": "llama3.2:1b-instruct-fp16",
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
"Llama-Guard-3-8B": "xe/llamaguard3:latest",
"Llama-Guard-3-8B": "llama-guard3:8b",
"Llama-Guard-3-1B": "llama-guard3:1b",
}
@ -84,7 +88,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
return ret
def completion(
async def completion(
self,
model: str,
content: InterleavedTextMedia,
@ -92,9 +96,66 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError()
request = CompletionRequest(
model=model,
content=content,
sampling_params=sampling_params,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
def chat_completion(
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
sampling_options = get_sampling_options(request)
# This is needed since the Ollama API expects num_predict to be set
# for early truncation instead of max_tokens.
if sampling_options["max_tokens"] is not None:
sampling_options["num_predict"] = sampling_options["max_tokens"]
return {
"model": OLLAMA_SUPPORTED_MODELS[request.model],
"prompt": completion_request_to_prompt(request, self.formatter),
"options": sampling_options,
"raw": True,
"stream": request.stream,
}
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params_for_completion(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.generate(**params)
async for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream, self.formatter):
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params_for_completion(request)
r = await self.client.generate(**params)
assert isinstance(r, dict)
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_completion_response(response, self.formatter)
async def chat_completion(
self,
model: str,
messages: List[Message],
@ -118,7 +179,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
if stream:
return self._stream_chat_completion(request)
else:
return self._nonstream_chat_completion(request)
return await self._nonstream_chat_completion(request)
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
@ -143,7 +204,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(request, response, self.formatter)
return process_chat_completion_response(response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
@ -163,7 +224,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
stream, self.formatter
):
yield chunk

View file

@ -66,7 +66,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def shutdown(self) -> None:
pass
def completion(
async def completion(
self,
model: str,
content: InterleavedTextMedia,
@ -76,7 +76,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
) -> AsyncGenerator:
raise NotImplementedError()
def chat_completion(
async def chat_completion(
self,
model: str,
messages: List[Message],
@ -101,7 +101,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
if stream:
return self._stream_chat_completion(request)
else:
return self._nonstream_chat_completion(request)
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
@ -116,7 +116,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(request, response, self.formatter)
return process_chat_completion_response(response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
@ -135,7 +135,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
stream, self.formatter
):
yield chunk

View file

@ -64,7 +64,7 @@ class TogetherInferenceAdapter(
) -> AsyncGenerator:
raise NotImplementedError()
def chat_completion(
async def chat_completion(
self,
model: str,
messages: List[Message],
@ -101,14 +101,14 @@ class TogetherInferenceAdapter(
if stream:
return self._stream_chat_completion(request, client)
else:
return self._nonstream_chat_completion(request, client)
return await self._nonstream_chat_completion(request, client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: Together
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: Together
@ -123,7 +123,7 @@ class TogetherInferenceAdapter(
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
stream, self.formatter
):
yield chunk

View file

@ -0,0 +1,15 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import VLLMImplConfig
from .vllm import VLLMInferenceAdapter
async def get_adapter_impl(config: VLLMImplConfig, _deps):
assert isinstance(config, VLLMImplConfig), f"Unexpected config type: {type(config)}"
impl = VLLMInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,22 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class VLLMImplConfig(BaseModel):
url: Optional[str] = Field(
default=None,
description="The URL for the vLLM model serving endpoint",
)
api_token: Optional[str] = Field(
default=None,
description="The API token",
)

View file

@ -0,0 +1,152 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from .config import VLLMImplConfig
VLLM_SUPPORTED_MODELS = {
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
}
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, config: VLLMImplConfig) -> None:
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
self.client = None
async def initialize(self) -> None:
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
async def register_model(self, model: ModelDef) -> None:
raise ValueError("Model registration is not supported for vLLM models")
async def shutdown(self) -> None:
pass
async def list_models(self) -> List[ModelDef]:
return [
ModelDef(identifier=model.id, llama_model=model.id)
for model in self.client.models.list()
]
def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
raise NotImplementedError()
def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_chat_completion(request, self.client)
else:
return self._nonstream_chat_completion(request, self.client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> AsyncGenerator:
params = self._get_params(request)
# TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async
# generator so this wrapper is not necessary?
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": VLLM_SUPPORTED_MODELS[request.model],
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"stream": request.stream,
**get_sampling_options(request),
}
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()