diff --git a/docs/_static/llama-stack-spec.html b/docs/_static/llama-stack-spec.html
index 6b98cad90..aeb350ce0 100644
--- a/docs/_static/llama-stack-spec.html
+++ b/docs/_static/llama-stack-spec.html
@@ -5303,9 +5303,6 @@
},
"tool_config": {
"$ref": "#/components/schemas/ToolConfig"
- },
- "allow_turn_resume": {
- "type": "boolean"
}
},
"additionalProperties": false,
diff --git a/docs/_static/llama-stack-spec.yaml b/docs/_static/llama-stack-spec.yaml
index 13f7edc4b..f3410aa7d 100644
--- a/docs/_static/llama-stack-spec.yaml
+++ b/docs/_static/llama-stack-spec.yaml
@@ -3635,8 +3635,6 @@ components:
$ref: '#/components/schemas/AgentTool'
tool_config:
$ref: '#/components/schemas/ToolConfig'
- allow_turn_resume:
- type: boolean
additionalProperties: false
required:
- messages
diff --git a/llama_stack/apis/agents/agents.py b/llama_stack/apis/agents/agents.py
index c904fdbef..eb3399788 100644
--- a/llama_stack/apis/agents/agents.py
+++ b/llama_stack/apis/agents/agents.py
@@ -296,9 +296,6 @@ class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
stream: Optional[bool] = False
tool_config: Optional[ToolConfig] = None
- # TODO (xiyan): temporary flag, will remove for 0.1.5
- allow_turn_resume: Optional[bool] = False
-
@json_schema_type
class AgentTurnResumeRequest(BaseModel):
@@ -355,7 +352,6 @@ class Agents(Protocol):
documents: Optional[List[Document]] = None,
toolgroups: Optional[List[AgentToolGroup]] = None,
tool_config: Optional[ToolConfig] = None,
- allow_turn_resume: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]: ...
@webmethod(
diff --git a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
index 3062aa501..886a36024 100644
--- a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
+++ b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
@@ -243,8 +243,7 @@ class ChatAgent(ShieldRunnerMixin):
steps=steps,
)
await self.storage.add_turn_to_session(request.session_id, turn)
-
- if output_message.tool_calls and request.allow_turn_resume:
+ if output_message.tool_calls:
chunk = AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnAwaitingInputPayload(
@@ -686,10 +685,16 @@ class ChatAgent(ShieldRunnerMixin):
message.content = [message.content] + output_attachments
yield message
else:
- logcat.debug("agents", f"completion message with EOM (iter: {n_iter}): {str(message)}")
+ logcat.debug(
+ "agents",
+ f"completion message with EOM (iter: {n_iter}): {str(message)}",
+ )
input_messages = input_messages + [message]
else:
- logcat.debug("agents", f"completion message (iter: {n_iter}) from the model: {str(message)}")
+ logcat.debug(
+ "agents",
+ f"completion message (iter: {n_iter}) from the model: {str(message)}",
+ )
# 1. Start the tool execution step and progress
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
diff --git a/llama_stack/providers/inline/agents/meta_reference/agents.py b/llama_stack/providers/inline/agents/meta_reference/agents.py
index b5eb12c49..db33bca4a 100644
--- a/llama_stack/providers/inline/agents/meta_reference/agents.py
+++ b/llama_stack/providers/inline/agents/meta_reference/agents.py
@@ -140,7 +140,6 @@ class MetaReferenceAgentsImpl(Agents):
documents: Optional[List[Document]] = None,
stream: Optional[bool] = False,
tool_config: Optional[ToolConfig] = None,
- allow_turn_resume: Optional[bool] = False,
) -> AsyncGenerator:
request = AgentTurnCreateRequest(
agent_id=agent_id,
@@ -150,7 +149,6 @@ class MetaReferenceAgentsImpl(Agents):
toolgroups=toolgroups,
documents=documents,
tool_config=tool_config,
- allow_turn_resume=allow_turn_resume,
)
if stream:
return self._create_agent_turn_streaming(request)
diff --git a/tests/integration/fixtures/recorded_responses/chat_completion.json b/tests/integration/fixtures/recorded_responses/chat_completion.json
index 6f2973ffc..8a4bae93d 100644
--- a/tests/integration/fixtures/recorded_responses/chat_completion.json
+++ b/tests/integration/fixtures/recorded_responses/chat_completion.json
@@ -10629,5 +10629,8415 @@
}
],
"type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant Always respond with tool calls no matter what. '), UserMessage(role='user', content='Get the boiling point of polyjuice with a tool call.', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='get_boiling_point', arguments={'liquid_name': 'polyjuice', 'celcius': True})]), ToolResponseMessage(role='tool', call_id='', tool_name='get_boiling_point', content='-100')])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " provided function definitions are",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " not suitable",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " for this task. Please re",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "work them to",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " align with the task requirements.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant Always respond with tool calls no matter what. '), UserMessage(role='user', content='Get the boiling point of polyjuice with a tool call.', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "[",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "get_boiling_point(liquid_name='polyjuice', celcius",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "=True)]",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "celcius": true,
+ "liquid_name": "polyjuice"
+ },
+ "call_id": "3cb5e131-c553-494b-ae31-7d3836fbb4d8",
+ "tool_name": "get_boiling_point"
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Call get_boiling_point and answer What is the boiling point of polyjuice?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='get_boiling_point', arguments={'liquid_name': 'polyjuice', 'celcius': True})]), ToolResponseMessage(role='tool', call_id='', tool_name='get_boiling_point', content='-100')])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " function call returned an",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " error since \"",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "polyjuice\" is not a real liquid. Polyju",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "ice is a fictional substance from the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " Harry Potter series. The boiling",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " point of a substance is a physical",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " property that can be measured, but it",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " only applies to real substances. If you",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "'d like to know the boiling point of a different",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " liquid, I can",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " try to help with that.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Call get_boiling_point and answer What is the boiling point of polyjuice?', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "[",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "get_boiling_point(liquid",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_name='polyjuice', celcius=True",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ")]",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "celcius": true,
+ "liquid_name": "polyjuice"
+ },
+ "call_id": "4c62a314-448c-4cd5-a921-610583007faa",
+ "tool_name": "get_boiling_point"
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Give me a sentence that contains the word: hello', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "When",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " I answered the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " phone, the friendly voice on the other end said",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " \"hello\" and asked how I was doing",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)\\n# Sample of data\\nprint(\"Data sample from file:\")\\nprint(df.head())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " error message indicates that the file 'bwrap' was not",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " found. This is likely because the file path provided is incorrect or the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " file does not exist in the specified location.\n\nTo resolve",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " this issue, you should ensure that",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the file path is correct",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " and the file exists in the specified location. If",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the file is located in a different directory,",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " you should provide the correct path to the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " file.\n\nAdditionally, you can use the `os`",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " module to check if the file exists before attempting to",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " read it. Here's an example:\n\n```",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "python\nimport os\nimport pandas as pd\n\nfile",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " = \"/var/folders/rb/qvq",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "vwgyj6yjd3t4pwsy9t0",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "rm0000gn/T/tmpdcpkc9",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_f/15dhK1rDinflation.csv\"\n\nif",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " os.path.isfile(file_path):\n df = pd.read_csv(file_path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ")\n print(\"Number of rows and columns in the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " data:\", df.shape)\n print(\"Columns of the data are:\", len",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "(df.columns))\n print(\"Columns of the data are:\", df.columns)\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " print(\"Datatype of the columns are:\", df.dtypes)\n ",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " print(\"Data sample from file:\")\n print(df.head())\nelse:\n ",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " print(\"The file does not exist\")\n```\n\nThis code checks if",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the file exists before attempting to read it. If the file does not exist",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ", it prints a message indicating that the file does not exist.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\n# Load",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " data\ndf = pd.read_csv(\"/var/folders/rb/qv",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "qvwgyj6yjd3",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "t4pwsy9t0rm0000gn/T/tmpd",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "cpkc9_f/15dhK1rDinflation.csv\")\n",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "# Rows\nprint(\"Number of rows and columns in the data:\", df",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".shape)\n# Columns\nprint(\"Columns of the data are:\", len(df",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".columns))\n# Column names\nprint(\"Columns of the data are:\", df",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".columns)\n# Column dtypes\nprint(\"Datatype of the columns are",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ":\", df.dtypes)\n# Sample of data\nprint",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "(\"Data sample from file:\")\nprint(df.head())",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\n# Load data\ndf = pd.read_csv(\"/var/folders/rb/qvqvwgyj6yjd3t4pwsy9t0rm0000gn/T/tmpdcpkc9_f/15dhK1rDinflation.csv\")\n# Rows\nprint(\"Number of rows and columns in the data:\", df.shape)\n# Columns\nprint(\"Columns of the data are:\", len(df.columns))\n# Column names\nprint(\"Columns of the data are:\", df.columns)\n# Column dtypes\nprint(\"Datatype of the columns are:\", df.dtypes)\n# Sample of data\nprint(\"Data sample from file:\")\nprint(df.head())"
+ },
+ "call_id": "bdb9c5e1-2082-49c8-ab7a-15aae2135656",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\"), CompletionMessage(role='assistant', content='The error message indicates that the file \"\" does not exist. This could be due to a number of reasons such as the file being deleted, the path being incorrect, or the file being in a different location.\\n\\nTo resolve this issue, you can try the following:\\n\\n1. Check the file path: Make sure the file path is correct and the file exists in the specified location.\\n2. Use a relative path: If the file is in the same directory as your Python script, you can use a relative path instead of an absolute path.\\n3. Check file permissions: Make sure you have the necessary permissions to read the file.\\n4. Use a try-except block: You can use a try-except block to catch the FileNotFoundError and handle it accordingly.\\n\\nHere is an example of how you can modify the code to handle the FileNotFoundError:\\n\\n```\\nimport pandas as pd\\n\\ntry:\\n df = pd.read_csv(\"\")\\n print(df.head())\\n print(df.info())\\n print(df.describe())\\nexcept FileNotFoundError:\\n print(\"The file does not exist\")\\n```\\n\\nThis code will print \"The file does not exist\" if the file is not found, instead of raising an error.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Convert the \\'Year\\' column to datetime\\ndf[\\'Year\\'] = pd.to_datetime(df[\\'Year\\'], format=\\'%Y\\')\\n\\n# Group by \\'Year\\' and calculate the average inflation\\ndf_avg_inflation = df.groupby(\\'Year\\')[\\'Inflation\\'].mean().reset_index()\\n\\n# Plot the average inflation as a time series\\nplt.figure(figsize=(10,6))\\nplt.plot(df_avg_inflation[\\'Year\\'], df_avg_inflation[\\'Inflation\\'], marker=\\'o\\')\\nplt.title(\\'Average Yearly Inflation\\')\\nplt.xlabel(\\'Year\\')\\nplt.ylabel(\\'Inflation\\')\\nplt.grid(True)\\nplt.show()'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " error message indicates that the file \"/var/folders",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "/rb/qv8vwgyj6y",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "jd3t4pwsy9t0",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "rm0000gn/T/tmpdcpkc9",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_f/FKWQnYoVinflation.csv\"",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " does not exist. This could be due to a",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " number of reasons such as the file being deleted,",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the path being incorrect, or the file being in",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " a different location.\n\nTo resolve this issue, you can try the following:\n\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "1. Check the file",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " path: Make sure the file path is correct and",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the file exists in the specified location.\n2. Use a relative path:",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " If the file is in the same directory as your Python script, you can",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " use a relative path instead of an absolute path.\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "3. Check file permissions: Make sure you have the necessary permissions to read",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the file.\n4. Use a try-except block: You can use",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " a try-except block to catch the FileNotFoundError and handle it accordingly.\n\nHere",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " is an example of how you can modify the code to handle the FileNotFoundError:\n\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "```\nimport pandas as pd\nimport matplotlib.pyplot as plt\n\ntry:\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " df = pd.read_csv(\"/var/folders/rb/q",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "v8vwgyj6yjd3t4pwsy9",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "t0rm0000gn/T/tmpdcpkc9_f/FKW",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "QnYoVinflation",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".csv\")\n df['Year'] = pd.to",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_datetime(df['Year'], format='%Y')\n df_avg_inflation =",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " df.groupby('Year')['Inflation'].mean().reset_index()\n plt",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".figure(figsize=(10,6))\n plt.plot(df_avg_inflation['",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "Year'], df_avg_inflation['Inflation'], marker='o')\n ",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " plt.title('Average Yearly Inflation')\n ",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " plt.xlabel('Year')\n plt.ylabel('Inflation')\n plt.grid",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "(True)\n plt.show()\nexcept FileNotFoundError:\n print(\"The file does",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " not exist\")\n```\n\nThis code will print \"The file does not exist",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "\" if the file is not found, instead of raising an error.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\"), CompletionMessage(role='assistant', content='The error message indicates that the file \"\" does not exist. This could be due to a number of reasons such as the file being deleted, the path being incorrect, or the file being in a different location.\\n\\nTo resolve this issue, you can try the following:\\n\\n1. Check the file path: Make sure the file path is correct and the file exists in the specified location.\\n2. Use a relative path: If the file is in the same directory as your Python script, you can use a relative path instead of an absolute path.\\n3. Check file permissions: Make sure you have the necessary permissions to read the file.\\n4. Use a try-except block: You can use a try-except block to catch the FileNotFoundError and handle it accordingly.\\n\\nHere is an example of how you can modify the code to handle the FileNotFoundError:\\n\\n```\\nimport pandas as pd\\n\\ntry:\\n df = pd.read_csv(\"\")\\n print(df.head())\\n print(df.info())\\n print(df.describe())\\nexcept FileNotFoundError:\\n print(\"The file does not exist\")\\n```\\n\\nThis code will print \"The file does not exist\" if the file is not found, instead of raising an error.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\nimport matplotlib.pyplot as plt",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "\n\n# Load the CSV file\ndf = pd",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".read_csv(\"/var/folders/rb/qv",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "8vwgyj6yjd3t4",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "pwsy9t0rm0000gn",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "/T/tmpdcpkc9_f/FKWQ",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "nYoVinflation.csv\")\n\n# Convert the '",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "Year' column to datetime\ndf['Year'] = pd",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".to_datetime(df['Year'], format",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "='%Y')\n\n# Group by 'Year' and calculate the average inflation\ndf_avg_inflation = df.groupby('Year')['Inflation'].mean().reset_index()\n\n# Plot the average inflation as a time series\nplt.figure(figsize=(10,6))\nplt.plot(df_avg_inflation['Year'], df_avg_in",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation['Inflation'], marker='o')\nplt.title('Average Yearly",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " Inflation')\nplt.xlabel('Year')\nplt.ylabel",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "('Inflation')\nplt.grid(True)\nplt.show()",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load the CSV file\ndf = pd.read_csv(\"/var/folders/rb/qv8vwgyj6yjd3t4pwsy9t0rm0000gn/T/tmpdcpkc9_f/FKWQnYoVinflation.csv\")\n\n# Convert the 'Year' column to datetime\ndf['Year'] = pd.to_datetime(df['Year'], format='%Y')\n\n# Group by 'Year' and calculate the average inflation\ndf_avg_inflation = df.groupby('Year')['Inflation'].mean().reset_index()\n\n# Plot the average inflation as a time series\nplt.figure(figsize=(10,6))\nplt.plot(df_avg_inflation['Year'], df_avg_inflation['Inflation'], marker='o')\nplt.title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel('Inflation')\nplt.grid(True)\nplt.show()"
+ },
+ "call_id": "619c3b2c-3e23-485f-85bd-38a5ecf398b2",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\"), CompletionMessage(role='assistant', content='The error message indicates that the file \"\" does not exist. This could be due to a number of reasons such as the file being deleted, the path being incorrect, or the file not being accessible.\\n\\nTo resolve this issue, you should ensure that the file exists and the path is correct. If the file does not exist, you will need to create it or obtain it from the relevant source. If the path is incorrect, you will need to update the path to the correct location of the file.\\n\\nAdditionally, you can use the `os` module to check if the file exists before trying to load it:\\n\\n```\\nimport os\\nimport pandas as pd\\n\\nfile_path = \"\"\\n\\nif os.path.isfile(file_path):\\n df = pd.read_csv(file_path)\\n print(df.head())\\n print(df.info())\\n print(df.describe())\\nelse:\\n print(\"The file does not exist\")\\n```\\n\\nThis code will check if the file exists before trying to load it, and will print a message if the file does not exist.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Convert the \\'Year\\' column to datetime\\ndf[\\'Year\\'] = pd.to_datetime(df[\\'Year\\'], format=\\'%Y\\')\\n\\n# Group by \\'Year\\' and calculate the average inflation\\ndf_avg_inflation = df.groupby(\\'Year\\')[\\'Inflation\\'].mean().reset_index()\\n\\n# Plot the average inflation as a time series\\nplt.figure(figsize=(10,6))\\nplt.plot(df_avg_inflation[\\'Year\\'], df_avg_inflation[\\'Inflation\\'], marker=\\'o\\')\\nplt.title(\\'Average Yearly Inflation\\')\\nplt.xlabel(\\'Year\\')\\nplt.ylabel(\\'Inflation\\')\\nplt.grid(True)\\nplt.show()'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=, system_message_behavior=)), ('tool_prompt_format', ), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " error message indicates that the file \"/var/folders/rb/qv8",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "vwgyj6yjd3t4pwsy9t0",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "rm0000gn/T/tmp5zsm1ywy/RKBk",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "Al1zinflation.csv\" does not exist. This could be due to",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " a number of reasons such as the file being deleted, the path being incorrect",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ", or the file not being accessible.\n\nTo resolve this issue, you should",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " ensure that the file exists and the path is correct. If the file does",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " not exist, you will need to create it or obtain it from the relevant",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " source. If the path is incorrect, you will need to update the path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " to the correct location of the file.\n\nAdditionally, you can use the `",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "os` module to check if the file exists before trying to load it:\n\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "```\nimport os\nimport pandas as pd\nimport",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " matplotlib.pyplot as plt\n\nfile_path = \"/var/folders/rb/q",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "v8vwgyj6yjd3t4pwsy9",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "t0rm0000gn/T/tmp5zsm1ywy/R",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "KBkAl1zinflation.csv\"\n\nif os.path.isfile(file_path):\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " df = pd.read_csv(file_path)\n df['",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "Year'] = pd.to_datetime(df['Year'], format='%Y')\n ",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " df_avg_inflation = df.groupby('Year')['Inflation'].mean().",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "reset_index()\n plt.figure(figsize=(10,6))\n plt.plot",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "(df_avg_inflation['Year'], df_avg_inflation['Inflation'],",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " marker='o')\n plt.title('Average Yearly Inflation')\n ",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " plt.xlabel('Year')\n plt.ylabel('Inflation')\n plt.grid",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "(True)\n plt.show()\nelse:\n print(\"The file does not",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " exist\")\n```\n\nThis code will check if the file exists before trying to",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " load it, and will print a message if the file does not exist.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\"), CompletionMessage(role='assistant', content='The error message indicates that the file \"\" does not exist. This could be due to a number of reasons such as the file being deleted, the path being incorrect, or the file not being accessible.\\n\\nTo resolve this issue, you should ensure that the file exists and the path is correct. If the file does not exist, you will need to create it or obtain it from the relevant source. If the path is incorrect, you will need to update the path to the correct location of the file.\\n\\nAdditionally, you can use the `os` module to check if the file exists before trying to load it:\\n\\n```\\nimport os\\nimport pandas as pd\\n\\nfile_path = \"\"\\n\\nif os.path.isfile(file_path):\\n df = pd.read_csv(file_path)\\n print(df.head())\\n print(df.info())\\n print(df.describe())\\nelse:\\n print(\"The file does not exist\")\\n```\\n\\nThis code will check if the file exists before trying to load it, and will print a message if the file does not exist.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load the CSV",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " file\ndf = pd.read_csv(\"/var/folders/rb/qv",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "8vwgyj6yjd3t4pwsy9t",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "0rm0000gn/T/tmp5zsm1ywy/RKB",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "kAl1zinflation.csv\")\n\n# Convert the 'Year'",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " column to datetime\ndf['Year'] = pd.to_datetime(df['Year",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "'], format='%Y')\n\n# Group by",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " 'Year' and calculate the average inflation\ndf_avg_in",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation = df.groupby('Year')['Inflation'].mean().reset_index()\n\n",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "# Plot the average inflation as a time series\nplt.figure(figsize=(10",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ",6))\nplt.plot(df_avg_inflation['Year'], df_avg_in",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation['Inflation'], marker='o')\nplt.title('Average Yearly",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " Inflation')\nplt.xlabel('Year')\nplt.ylabel('Inflation')\nplt",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".grid(True)\nplt.show()",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load the CSV file\ndf = pd.read_csv(\"/var/folders/rb/qv8vwgyj6yjd3t4pwsy9t0rm0000gn/T/tmp5zsm1ywy/RKBkAl1zinflation.csv\")\n\n# Convert the 'Year' column to datetime\ndf['Year'] = pd.to_datetime(df['Year'], format='%Y')\n\n# Group by 'Year' and calculate the average inflation\ndf_avg_inflation = df.groupby('Year')['Inflation'].mean().reset_index()\n\n# Plot the average inflation as a time series\nplt.figure(figsize=(10,6))\nplt.plot(df_avg_inflation['Year'], df_avg_inflation['Inflation'], marker='o')\nplt.title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel('Inflation')\nplt.grid(True)\nplt.show()"
+ },
+ "call_id": "61b988d6-45f4-4147-8b62-69c3abbb03a9",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\"), CompletionMessage(role='assistant', content='The error message indicates that the file \"\" does not exist. This could be due to a number of reasons such as the file being deleted, the path being incorrect, or the file not being accessible.\\n\\nTo resolve this issue, you should ensure that the file exists and the path is correct. If the file does not exist, you will need to create it or obtain it from the relevant source. If the path is incorrect, you will need to update the path to the correct location of the file.\\n\\nAdditionally, you can use the `os` module to check if the file exists before trying to read it. Here is an example:\\n\\n```\\nimport os\\nimport pandas as pd\\n\\nfile_path = \"\"\\n\\nif os.path.isfile(file_path):\\n df = pd.read_csv(file_path)\\n print(df.head())\\n print(df.info())\\n print(df.describe())\\nelse:\\n print(\"The file does not exist\")\\n```\\n\\nThis code will check if the file exists before trying to read it. If the file does not exist, it will print \"The file does not exist\".', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Convert the \\'Year\\' column to datetime\\ndf[\\'Year\\'] = pd.to_datetime(df[\\'Year\\'], format=\\'%Y\\')\\n\\n# Group by \\'Year\\' and calculate the average inflation\\ndf_avg_inflation = df.groupby(\\'Year\\')[\\'Inflation\\'].mean().reset_index()\\n\\n# Plot the average yearly inflation as a time series\\nplt.figure(figsize=(10,6))\\nplt.plot(df_avg_inflation[\\'Year\\'], df_avg_inflation[\\'Inflation\\'], marker=\\'o\\')\\nplt.title(\\'Average Yearly Inflation\\')\\nplt.xlabel(\\'Year\\')\\nplt.ylabel(\\'Inflation\\')\\nplt.grid(True)\\nplt.show()'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=, system_message_behavior=)), ('tool_prompt_format', ), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " error message indicates that the file \"/var/folders/rb/qv8",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "vwgyj6y",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "jd3t4pwsy9t0",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "rm0000gn/T/tmp1ugde3u9/FSj",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "wY288inflation.csv\" does not exist. This could be due",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " to a number of reasons such as the file being deleted, the path being",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " incorrect, or the file not being accessible.\n\nTo resolve this issue, you",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " should ensure that the file exists and the path is correct. If the file",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " does not exist, you will need to create it",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " or obtain it from the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " relevant source. If the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " path is incorrect, you will need to update the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " path to the correct location of the file.\n\nAdditionally",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ", you can use the `os` module to",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " check if the file exists before trying to read it",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ". Here is an example:\n\n```\nimport os",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "\nimport pandas as pd\nimport matplotlib.pyplot as plt\n\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "file_path = \"/var/folders/rb/qv8vwgyj",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "6yjd3t4pwsy9t0rm0000",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "gn/T/tmp1ugde3u9/FSjwY288",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "inflation.csv\"\n\nif os.path.isfile(file_path):\n df = pd",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".read_csv(file_path)\n df['Year'] = pd.to_datetime(df",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "['Year'], format='%Y')\n df_avg",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_inflation = df.groupby('Year')['Inflation",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "'].mean().reset_index()\n plt.figure(figsize=(10,6))\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " plt.plot(df_avg_inflation['Year'], df_avg_inflation['",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "Inflation'], marker='o')\n plt.title('Average Yearly In",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "flation')\n plt.xlabel('Year')\n plt",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".ylabel('Inflation')\n plt.grid(True)\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " plt.show()\nelse:\n print(\"The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " file does not exist\")\n```\n\nThis code will",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " check if the file exists before trying to read it. If the file does",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " not exist, it will print \"The file does not exist\".",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\"), CompletionMessage(role='assistant', content='The error message indicates that the file \"\" does not exist. This could be due to a number of reasons such as the file being deleted, the path being incorrect, or the file not being accessible.\\n\\nTo resolve this issue, you should ensure that the file exists and the path is correct. If the file does not exist, you will need to create it or obtain it from the relevant source. If the path is incorrect, you will need to update the path to the correct location of the file.\\n\\nAdditionally, you can use the `os` module to check if the file exists before trying to read it. Here is an example:\\n\\n```\\nimport os\\nimport pandas as pd\\n\\nfile_path = \"\"\\n\\nif os.path.isfile(file_path):\\n df = pd.read_csv(file_path)\\n print(df.head())\\n print(df.info())\\n print(df.describe())\\nelse:\\n print(\"The file does not exist\")\\n```\\n\\nThis code will check if the file exists before trying to read it. If the file does not exist, it will print \"The file does not exist\".', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load the CSV",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " file\ndf = pd.read_csv(\"/var/folders/rb/qv",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "8vwgyj6yjd3t4pwsy9t",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "0rm0000gn/T/tmp1ugde3u9/FS",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "jwY288inflation.csv\")\n\n# Convert the 'Year' column",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " to datetime\ndf['Year'] = pd.to_datetime(df['Year'],",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " format='%Y')\n\n# Group by",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " 'Year' and calculate the average inflation\ndf_avg_in",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation = df.groupby('Year')['Inflation'].mean().reset_index()\n\n",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "# Plot the average yearly inflation as a time series\n",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "plt.figure(figsize=(10,6))\nplt.plot(df_avg_inflation['",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "Year'], df_avg_inflation['Inflation'], marker='o')\nplt",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "('Inflation')\nplt.grid(True)\nplt.show()",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load the CSV file\ndf = pd.read_csv(\"/var/folders/rb/qv8vwgyj6yjd3t4pwsy9t0rm0000gn/T/tmp1ugde3u9/FSjwY288inflation.csv\")\n\n# Convert the 'Year' column to datetime\ndf['Year'] = pd.to_datetime(df['Year'], format='%Y')\n\n# Group by 'Year' and calculate the average inflation\ndf_avg_inflation = df.groupby('Year')['Inflation'].mean().reset_index()\n\n# Plot the average yearly inflation as a time series\nplt.figure(figsize=(10,6))\nplt.plot(df_avg_inflation['Year'], df_avg_inflation['Inflation'], marker='o')\nplt.title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel('Inflation')\nplt.grid(True)\nplt.show()"
+ },
+ "call_id": "da5760dd-614a-4c19-954c-b4e354e75d79",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=, system_message_behavior=)), ('tool_prompt_format', ), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " error message indicates that the file \"/var/folders",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "/rb/qv8",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "vwgyj6yjd3t4pwsy9t0",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "rm0000gn/T/tmp5zsm1ywy/RKBk",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "Al1zinflation.csv\" does not exist. This could be",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " due to a number of reasons such as the file being deleted, the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " path being incorrect, or the file",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " not being accessible.\n\nTo resolve this issue, you should ensure",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " that the file exists and the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " path is correct. If the file does not",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " exist, you will need to create it or obtain it",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " from the relevant",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " source. If the path is",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " incorrect, you will need to update the path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " to the correct location of the file.\n\nAdditionally,",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " you can use the `os` module to",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " check if the file exists before trying to load it:\n\n``",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "`\nimport os\nimport pandas as pd\n\nfile_path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " = \"/var/folders",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "/rb/qv8vwgyj6y",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "jd3t4pwsy9t0rm0000gn/T",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "/tmp5zsm1ywy/RKBkAl1zinflation.csv",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "\"\n\nif os.path.isfile(file_path):\n df =",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " pd.read_csv(file_path)\n print(df.head())\n print",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "(df.info())\n print(df.describe())\nelse:\n print(\"The file",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " does not exist\")\n```\n\nThis code will check if the file exists before",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " trying to load it, and will print a message if",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the file does not exist.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print information about the dataframe\\nprint(df.info())\\n\\n# Print summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"error\\n[stdout]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stdout]\\n[stderr]\\n[Errno 2] No such file or directory: 'bwrap'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " error message indicates that the file \"/var/folders/rb/qv8",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "vwgyj6yjd3t4p",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "wsy9t0rm0000gn/T/tmpdcpkc9",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_f/FKWQnYoVinflation.csv\"",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " does not exist. This could be",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " due to a number of reasons such as the file being deleted, the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " path being incorrect, or the file",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " being in a different location.\n\nTo resolve this issue, you can try",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the following:\n\n1. Check the file path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ": Make sure the file path is correct and the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " file exists in the specified location.\n2. Use a",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " relative path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ": If the file is in the same directory as",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " your Python script, you can use",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " a relative path instead of",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " an absolute path.\n3. Check file permissions",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ": Make sure you have the necessary permissions to read the file.\n4.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " Use a try-except block: You can use a try-except",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " block to catch the FileNotFoundError and handle it accordingly.\n\nHere is an example of",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " how you can modify the code to handle the FileNotFoundError:\n\n```\nimport pandas",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " as pd\n\ntry:\n df =",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " pd.read_csv(\"/var/folders/rb/qv8vwgyj",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "6yjd3t",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "4pwsy9t0rm0000",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "gn/T/tmpdcpkc9_f/FKWQnYoVinflation",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".csv\")\n print(df.head())\n print(df.info())\n print(df",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".describe())\nexcept FileNotFoundError:\n print(\"The file does not exist\")\n``",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "`\n\nThis code will print \"The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " file does not exist\" if the file is not found, instead",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " of raising an error.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\n\n# Load the CSV file\ndf = pd.read",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "_csv(\"/var/folders/rb/qv8vwgyj6y",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "jd3t4pwsy9t0rm0000gn/T",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "/tmpdcpkc9_f/FKWQnYoVinflation.csv\")\n\n",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "# Print the first few rows of the dataframe\n",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "print(df.head())\n\n# Print information about",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " the dataframe\nprint(df",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".info())\n\n# Print summary statistics of the dataframe\nprint(df.describe",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "())",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\n\n# Load the CSV file\ndf = pd.read_csv(\"/var/folders/rb/qv8vwgyj6yjd3t4pwsy9t0rm0000gn/T/tmpdcpkc9_f/FKWQnYoVinflation.csv\")\n\n# Print the first few rows of the dataframe\nprint(df.head())\n\n# Print information about the dataframe\nprint(df.info())\n\n# Print summary statistics of the dataframe\nprint(df.describe())"
+ },
+ "call_id": "4208ff16-c9e6-4754-8566-8aeb587afcb3",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='I am attaching some documentation for Torchtune. Help me answer questions I will ask next.', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Torchtune documentation'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text='Result 1:\\nDocument_id:3e3a0\\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n from torchtune.datasets import chat_dataset\\n from torchtune.models.llama3 import llama3_tokenizer\\n\\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\\n ds = chat_dataset(\\n tokenizer=tokenizer,\\n source=\"json\",\\n data_files=\"data/my_data.json\",\\n split=\"train\",\\n conversation_column=\"dialogue\",\\n conversation_style=\"sharegpt\",\\n )\\n\\n.. code-block:: yaml\\n\\n # In config\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\\n\\n dataset:\\n _component_: torchtune.datasets.chat_dataset\\n source: json\\n data_files: data/my_data.json\\n split: train\\n conversation_column: dialogue\\n conversation_style: sharegpt\\n\\n.. note::\\n You can pass in any keyword argument for `load_dataset `_ into all our\\n Dataset classes and they will honor them. This is useful for common parameters\\n such as specifying the data split with :code:`split` or configuration with\\n :code:`name`\\n\\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\\nSince we\\'re fine-tuning Llama3, the tokenizer will handle all formatting for\\nus and prompt templates are optional. Other models such as Mistral\\'s :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\\nall messages according to their `recommendations `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:fd0f6\\nContent: etune\\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.use_dora=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n use_dora: True\\n\\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA ` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\\neven more memory savings!\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.apply_lora_to_mlp=True \\\\\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\\\\n model.lora_rank=16 \\\\\\n model.lora_alpha=32 \\\\\\n model.use_dora=True \\\\\\n model.quantize_base=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n apply_lora_to_mlp: True\\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\\n lora_rank: 16\\n lora_alpha: 32\\n use_dora: True\\n quantize_base: True\\n\\n\\n.. note::\\n\\n Under the hood, we\\'ve enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\\n\\n.. _glossary_distrib:\\n\\n\\n.. TODO\\n\\n.. Distributed\\n.. -----------\\n\\n.. .. _glossary_fsdp:\\n\\n.. Fully Sharded Data Parallel (FSDP)\\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n.. All our ``_distributed`` recipes use `FSDP `.\\n.. .. _glossary_fsdp2:\\n\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')]), CompletionMessage(role='assistant', content=\"I'm ready to help. What's your first question about Torchtune?\", stop_reason=, tool_calls=[]), UserMessage(role='user', content='Tell me how to use LoRA', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'using LoRA in Torchtune'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text=\"Result 1:\\nDocument_id:7da0c\\nContent: .. _lora_finetune_label:\\n\\n============================\\nFine-Tuning Llama2 with LoRA\\n============================\\n\\nThis guide will teach you about `LoRA `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW ` alone will not handle the definition of which parameters are trainable.\\n See :ref:`below` for how to do this.\\n\\nLet\\'s inspect each of these models a bit more closely.\\n\\n.. code-block:: bash\\n\\n # Print the first layer\\'s self-attention in the usual Llama2 model\\n >>> print(base_model.layers[0].attn)\\n MultiHeadAttention(\\n (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (output_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (pos_embeddings): RotaryPositionalEmbeddings()\\n )\\n\\n # Print the same for Llama2 with LoRA weights\\n >>> print(lora_model.layers[0].attn)\\n MultiHeadAttention(\\n (q_proj): LoRALinear(\\n (dropout): Dropout(p=0.0, inplace=False)\\n \\n'), TextContentItem(type='text', text='Result 3:\\nDocument_id:7da0c\\nContent: 06% of all params are trainable.\\n\\n.. note::\\n If you are directly using the LoRA recipe (as detailed :ref:`here`), you need only pass the\\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\\n of in the recipe.\\n\\n\\n.. _lora_recipe_label:\\n\\nLoRA finetuning recipe in torchtune\\n-----------------------------------\\n\\nFinally, we can put it all together and finetune a model using torchtune\\'s `LoRA recipe `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 4:\\nDocument_id:7da0c\\nContent: from our Llama2\\nmodel without any wrappers or custom checkpoint conversion logic.\\n\\n.. code-block:: python\\n\\n # Assuming that base_model already has the pretrained Llama2 weights,\\n # this will directly load them into your LoRA model without any conversion necessary.\\n lora_model.load_state_dict(base_model.state_dict(), strict=False)\\n\\n.. note::\\n Whenever loading weights with :code:`strict=False`, you should verify that any missing or extra keys in\\n the loaded :code:`state_dict` are as expected. torchtune\\'s LoRA recipes do this by default via\\n :func:`validate_missing_and_unexpected_for_lora() `.\\n\\nOnce we\\'ve loaded the base model weights, we also want to set only LoRA parameters to trainable.\\n\\n.. _setting_trainable_params:\\n\\n.. code-block:: python\\n\\n from torchtune.modules.peft.peft_utils import get_adapter_params, set_trainable_params\\n\\n # Fetch all params from the model that are associated with LoRA.\\n lora_params = get_adapter_params(lora_model)\\n\\n # Set requires_grad=True on lora_params, and requires_grad=False on all others.\\n set_trainable_params(lora_model, lora_params)\\n\\n # Print the total number of parameters\\n total_params = sum([p.numel() for p in lora_model.parameters()])\\n trainable_params = sum([p.numel() for p in lora_model.parameters() if p.requires_grad])\\n print(\\n f\"\"\"\\n {total_params} total params,\\n {trainable_params}\" trainable params,\\n {(100.0 * trainable_params / total_params):.2f}% of all params are trainable.\\n \"\"\"\\n )\\n\\n 6742609920 total params,\\n 4194304 trainable params,\\n 0.06% of all params are trainable.\\n\\n.. note::\\n If you are directly using the LoRA recipe (as detailed :ref:`here`), you need only pass the\\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\\n of in the recipe.\\n\\n\\n.. _lora_recipe_label:\\n\\nLoRA finetuning recipe in torchtune\\n-----------------------------------\\n\\nFinally, we can put it all together and finetune a model using torchtune\\'s `LoRA recipe , tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "To",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " use LoRA in Torchtune, you can follow",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " these steps:\n\n1. Import the necessary modules: `",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "from torchtune.models.llama2 import llama2_7b",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ", lora_llama2_7b`\n2. Create a",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " Llama2 model with LoRA: `lora",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_model = lora_llama2_7b(lora_attn_modules",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "=[\"q_proj\", \"v_proj\"])`\n3. Load the pre-trained",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " Llama2 weights into the LoRA",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " model: `lora_model.load_state_dict(base_model.state_dict(), strict",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "=False)`\n4. Set only LoRA parameters to trainable:",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " `from torchtune.modules.peft.peft_utils import get",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "_adapter_params, set_trainable_params`\n5. Run the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " LoRA finetune using torchtune's Lo",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "RA recipe: `tune run --",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "nnodes 1 --nproc_per_node 2 lora_finet",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "une_distributed --config llama2/7B_lora`\n\nYou can",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " also experiment with different LoRA configurations, such as applying Lo",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "RA to all linear layers in the self-attention, increasing",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the rank, and scaling alpha and rank together.\n\nNote: You",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " need to have the Llama2 weights and tokenizer downloaded",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " and installed, and you need to have the necessary dependencies",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " installed, including torchtune",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " and PyTorch.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='I am attaching some documentation for Torchtune. Help me answer questions I will ask next.', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Torchtune documentation'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text='Result 1:\\nDocument_id:3e3a0\\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n from torchtune.datasets import chat_dataset\\n from torchtune.models.llama3 import llama3_tokenizer\\n\\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\\n ds = chat_dataset(\\n tokenizer=tokenizer,\\n source=\"json\",\\n data_files=\"data/my_data.json\",\\n split=\"train\",\\n conversation_column=\"dialogue\",\\n conversation_style=\"sharegpt\",\\n )\\n\\n.. code-block:: yaml\\n\\n # In config\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\\n\\n dataset:\\n _component_: torchtune.datasets.chat_dataset\\n source: json\\n data_files: data/my_data.json\\n split: train\\n conversation_column: dialogue\\n conversation_style: sharegpt\\n\\n.. note::\\n You can pass in any keyword argument for `load_dataset `_ into all our\\n Dataset classes and they will honor them. This is useful for common parameters\\n such as specifying the data split with :code:`split` or configuration with\\n :code:`name`\\n\\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\\nSince we\\'re fine-tuning Llama3, the tokenizer will handle all formatting for\\nus and prompt templates are optional. Other models such as Mistral\\'s :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\\nall messages according to their `recommendations `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:fd0f6\\nContent: etune\\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.use_dora=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n use_dora: True\\n\\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA ` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\\neven more memory savings!\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.apply_lora_to_mlp=True \\\\\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\\\\n model.lora_rank=16 \\\\\\n model.lora_alpha=32 \\\\\\n model.use_dora=True \\\\\\n model.quantize_base=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n apply_lora_to_mlp: True\\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\\n lora_rank: 16\\n lora_alpha: 32\\n use_dora: True\\n quantize_base: True\\n\\n\\n.. note::\\n\\n Under the hood, we\\'ve enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\\n\\n.. _glossary_distrib:\\n\\n\\n.. TODO\\n\\n.. Distributed\\n.. -----------\\n\\n.. .. _glossary_fsdp:\\n\\n.. Fully Sharded Data Parallel (FSDP)\\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n.. All our ``_distributed`` recipes use `FSDP `.\\n.. .. _glossary_fsdp2:\\n\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')]), CompletionMessage(role='assistant', content=\"I'm ready to help. What's your first question about Torchtune?\", stop_reason=, tool_calls=[]), UserMessage(role='user', content='Tell me how to use LoRA', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "[k",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "nowledge_search(query=\"using LoRA in Torchtune",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "\")]",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "query": "using LoRA in Torchtune"
+ },
+ "call_id": "62b19206-ed9f-42d1-a614-1582d8598193",
+ "tool_name": "knowledge_search"
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='I am attaching some documentation for Torchtune. Help me answer questions I will ask next.', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Torchtune documentation'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text='Result 1:\\nDocument_id:3e3a0\\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n from torchtune.datasets import chat_dataset\\n from torchtune.models.llama3 import llama3_tokenizer\\n\\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\\n ds = chat_dataset(\\n tokenizer=tokenizer,\\n source=\"json\",\\n data_files=\"data/my_data.json\",\\n split=\"train\",\\n conversation_column=\"dialogue\",\\n conversation_style=\"sharegpt\",\\n )\\n\\n.. code-block:: yaml\\n\\n # In config\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\\n\\n dataset:\\n _component_: torchtune.datasets.chat_dataset\\n source: json\\n data_files: data/my_data.json\\n split: train\\n conversation_column: dialogue\\n conversation_style: sharegpt\\n\\n.. note::\\n You can pass in any keyword argument for `load_dataset `_ into all our\\n Dataset classes and they will honor them. This is useful for common parameters\\n such as specifying the data split with :code:`split` or configuration with\\n :code:`name`\\n\\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\\nSince we\\'re fine-tuning Llama3, the tokenizer will handle all formatting for\\nus and prompt templates are optional. Other models such as Mistral\\'s :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\\nall messages according to their `recommendations `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:fd0f6\\nContent: etune\\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.use_dora=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n use_dora: True\\n\\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA ` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\\neven more memory savings!\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.apply_lora_to_mlp=True \\\\\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\\\\n model.lora_rank=16 \\\\\\n model.lora_alpha=32 \\\\\\n model.use_dora=True \\\\\\n model.quantize_base=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n apply_lora_to_mlp: True\\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\\n lora_rank: 16\\n lora_alpha: 32\\n use_dora: True\\n quantize_base: True\\n\\n\\n.. note::\\n\\n Under the hood, we\\'ve enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\\n\\n.. _glossary_distrib:\\n\\n\\n.. TODO\\n\\n.. Distributed\\n.. -----------\\n\\n.. .. _glossary_fsdp:\\n\\n.. Fully Sharded Data Parallel (FSDP)\\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n.. All our ``_distributed`` recipes use `FSDP `.\\n.. .. _glossary_fsdp2:\\n\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "I",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "'m ready to help. What",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "'s your first question about Torchtune?",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='I am attaching some documentation for Torchtune. Help me answer questions I will ask next.', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "[k",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "nowledge_search(query=\"Torchtune documentation\")]",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "query": "Torchtune documentation"
+ },
+ "call_id": "42e0a687-a52e-4208-8181-db6e7a84faeb",
+ "tool_name": "knowledge_search"
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Instead of the standard multi-head attention, what attention type does Llama3-8B use?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Llama3-8B attention type'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text='Result 1:\\nDocument_id:num-1\\nContent: 3 `_ is a new family of models released by Meta AI that improves upon the performance of the Llama2 family\\nof models across a `range of different benchmarks `_.\\nCurrently there are two different sizes of Meta Llama 3: 8B and 70B. In this tutorial we will focus on the 8B size model.\\nThere are a few main changes between Llama2-7B and Llama3-8B models:\\n\\n- Llama3-8B uses `grouped-query attention `_ instead of the standard multi-head attention from Llama2-7B\\n- Llama3-8B has a larger vocab size (128,256 instead of 32,000 from Llama2 models)\\n- Llama3-8B uses a different tokenizer than Llama2 models (`tiktoken `_ instead of `sentencepiece `_)\\n- Llama3-\\n'), TextContentItem(type='text', text=\"Result 2:\\nDocument_id:num-1\\nContent: instead of 32,000 from Llama2 models)\\n- Llama3-8B uses a different tokenizer than Llama2 models (`tiktoken `_ instead of `sentencepiece `_)\\n- Llama3-8B uses a larger intermediate dimension in its MLP layers than Llama2-7B\\n- Llama3-8B uses a higher base value to calculate theta in its `rotary positional embeddings `_\\n\\n|\\n\\nGetting access to Llama3-8B-Instruct\\n------------------------------------\\n\\nFor this tutorial, we will be using the instruction-tuned version of Llama3-8B. First, let's download the model from Hugging Face. You will need to follow the instructions\\non the `official Meta page `_ to gain access to the model.\\nNext, make sure you grab your Hugging Face token from `here `_.\\n\\n\\n.. code-block:: bash\\n\\n tune download meta-llama/Meta-Llama-3\\n\"), TextContentItem(type='text', text=\"Result 3:\\nDocument_id:num-0\\nContent: :`download Llama3 Instruct weights `\\n\\n\\nTemplate changes from Llama2 to Llama3\\n--------------------------------------\\n\\nThe Llama2 chat model requires a specific template when prompting the pre-trained\\nmodel. Since the chat model was pretrained with this prompt template, if you want to run\\ninference on the model, you'll need to use the same template for optimal performance\\non chat data. Otherwise, the model will just perform standard text completion, which\\nmay or may not align with your intended use case.\\n\\nFrom the `official Llama2 prompt\\ntemplate guide `_\\nfor the Llama2 chat model, we can see that special tags are added:\\n\\n.. code-block:: text\\n\\n [INST] <>\\n You are a helpful, respectful, and honest assistant.\\n <>\\n\\n Hi! I am a human. [/INST] Hello there! Nice to meet you! I'm Meta AI, your friendly AI assistant \\n\\nLlama3 Instruct `overhauled `\\n\"), TextContentItem(type='text', text='Result 4:\\nDocument_id:num-0\\nContent: \\'m Meta AI, your friendly AI assistant<|eot_id|>\\n\\nThe tags are entirely different, and they are actually encoded differently than in\\nLlama2. Let\\'s walk through tokenizing an example with the Llama2 template and the\\nLlama3 template to understand how.\\n\\n.. note::\\n The Llama3 Base model uses a `different prompt template\\n `_ than Llama3 Instruct\\n because it has not yet been instruct tuned and the extra special tokens are untrained. If you\\n are running inference on the Llama3 Base model without fine-tuning we recommend the base\\n template for optimal performance. Generally, for instruct and chat data, we recommend using\\n Llama3 Instruct with its prompt template. The rest of this tutorial assumes you are using\\n Llama3 Instruct.\\n\\n.. _prompt_template_vs_special_tokens:\\n\\nTokenizing prompt templates & special tokens\\n--------------------------------------------\\n\\nLet\\'s say I have a sample of a single user-assistant turn accompanied with a system\\nprompt:\\n\\n.. code-block:: python\\n\\n sample = [\\n {\\n \"role\": \"system\",\\n \"\\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:num-3\\nContent: LoRA to Llama2 models\\n------------------------------\\n\\nWith torchtune, we can easily apply LoRA to Llama2 with a variety of different configurations.\\nLet\\'s take a look at how to construct Llama2 models in torchtune with and without LoRA.\\n\\n.. code-block:: python\\n\\n from torchtune.models.llama2 import llama2_7b, lora_llama2_7b\\n\\n # Build Llama2 without any LoRA layers\\n base_model = llama2_7b()\\n\\n # The default settings for lora_llama2_7b will match those for llama2_7b\\n # We just need to define which layers we want LoRA applied to.\\n # Within each self-attention, we can choose from [\"q_proj\", \"k_proj\", \"v_proj\", and \"output_proj\"].\\n # We can also set apply_lora_to_mlp=True or apply_lora_to_output=True to apply LoRA to other linear\\n # layers outside of the self-attention.\\n lora_model = lora_llama2_7b(lora_attn_modules=[\"q_proj\", \"v_proj\"])\\n\\n.. note::\\n\\n Calling :func:`lora_llama_2\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=, system_message_behavior=)), ('tool_prompt_format', ), ('tools', [ToolDefinition(tool_name='insert_into_memory', description='Insert documents into memory', parameters={}), ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "L",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "lama3-8B uses grouped-query",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " attention instead of the standard multi-head attention.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.3-70B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Instead of the standard multi-head attention, what attention type does Llama3-8B use?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Llama3-8B attention type'})]), ToolResponseMessage(role='tool', call_id='