mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 11:22:35 +00:00
correct output structure
This commit is contained in:
parent
486cd8679a
commit
15c1f8b885
2 changed files with 12 additions and 5 deletions
|
|
@ -298,8 +298,8 @@ class VectorDBWithIndex:
|
||||||
self.vector_db.embedding_model,
|
self.vector_db.embedding_model,
|
||||||
[c.content for c in chunks_to_embed],
|
[c.content for c in chunks_to_embed],
|
||||||
)
|
)
|
||||||
for c, embedding in zip(chunks_to_embed, resp.data, strict=False):
|
for c, data in zip(chunks_to_embed, resp.data, strict=False):
|
||||||
c.embedding = embedding
|
c.embedding = data.embedding
|
||||||
|
|
||||||
embeddings = np.array([c.embedding for c in chunks], dtype=np.float32)
|
embeddings = np.array([c.embedding for c in chunks], dtype=np.float32)
|
||||||
await self.index.add_chunks(chunks, embeddings)
|
await self.index.add_chunks(chunks, embeddings)
|
||||||
|
|
@ -335,7 +335,7 @@ class VectorDBWithIndex:
|
||||||
return await self.index.query_keyword(query_string, k, score_threshold)
|
return await self.index.query_keyword(query_string, k, score_threshold)
|
||||||
|
|
||||||
embeddings_response = await self.inference_api.openai_embeddings(self.vector_db.embedding_model, [query_string])
|
embeddings_response = await self.inference_api.openai_embeddings(self.vector_db.embedding_model, [query_string])
|
||||||
query_vector = np.array(embeddings_response.data[0], dtype=np.float32)
|
query_vector = np.array(embeddings_response.data[0].embedding, dtype=np.float32)
|
||||||
if mode == "hybrid":
|
if mode == "hybrid":
|
||||||
return await self.index.query_hybrid(
|
return await self.index.query_hybrid(
|
||||||
query_vector, query_string, k, score_threshold, reranker_type, reranker_params
|
query_vector, query_string, k, score_threshold, reranker_type, reranker_params
|
||||||
|
|
|
||||||
|
|
@ -13,6 +13,7 @@ from unittest.mock import AsyncMock, MagicMock
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
from llama_stack.apis.inference.inference import OpenAIEmbeddingData
|
||||||
from llama_stack.apis.tools import RAGDocument
|
from llama_stack.apis.tools import RAGDocument
|
||||||
from llama_stack.apis.vector_io import Chunk
|
from llama_stack.apis.vector_io import Chunk
|
||||||
from llama_stack.providers.utils.memory.vector_store import (
|
from llama_stack.providers.utils.memory.vector_store import (
|
||||||
|
|
@ -218,7 +219,10 @@ class TestVectorDBWithIndex:
|
||||||
Chunk(content="Test 2", embedding=None, metadata={}),
|
Chunk(content="Test 2", embedding=None, metadata={}),
|
||||||
]
|
]
|
||||||
|
|
||||||
mock_inference_api.openai_embeddings.return_value.data = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
|
mock_inference_api.openai_embeddings.return_value.data = [
|
||||||
|
OpenAIEmbeddingData(embedding=[0.1, 0.2, 0.3], index=0),
|
||||||
|
OpenAIEmbeddingData(embedding=[0.4, 0.5, 0.6], index=1),
|
||||||
|
]
|
||||||
|
|
||||||
await vector_db_with_index.insert_chunks(chunks)
|
await vector_db_with_index.insert_chunks(chunks)
|
||||||
|
|
||||||
|
|
@ -310,7 +314,10 @@ class TestVectorDBWithIndex:
|
||||||
Chunk(content="Test 3", embedding=None, metadata={}),
|
Chunk(content="Test 3", embedding=None, metadata={}),
|
||||||
]
|
]
|
||||||
|
|
||||||
mock_inference_api.openai_embeddings.return_value.data = [[0.1, 0.1, 0.1], [0.3, 0.3, 0.3]]
|
mock_inference_api.openai_embeddings.return_value.data = [
|
||||||
|
OpenAIEmbeddingData(embedding=[0.1, 0.1, 0.1], index=0),
|
||||||
|
OpenAIEmbeddingData(embedding=[0.3, 0.3, 0.3], index=1),
|
||||||
|
]
|
||||||
|
|
||||||
await vector_db_with_index.insert_chunks(chunks)
|
await vector_db_with_index.insert_chunks(chunks)
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue