diff --git a/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py b/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py index 884977803..6b607f1c7 100644 --- a/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py +++ b/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py @@ -10,16 +10,19 @@ # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. +import json from typing import Any, Mapping from llama_stack.providers.utils.common.data_schema_validator import ColumnName -def llama_stack_instruct_to_torchtune_instruct(sample: Mapping[str, Any]) -> Mapping[str, Any]: +def llama_stack_instruct_to_torchtune_instruct( + sample: Mapping[str, Any], +) -> Mapping[str, Any]: assert ColumnName.chat_completion_input.value in sample and ColumnName.expected_answer.value in sample, ( "Invalid input row" ) - input_messages = eval(str(sample[ColumnName.chat_completion_input.value])) + input_messages = json.loads(sample[ColumnName.chat_completion_input.value]) assert len(input_messages) == 1, "llama stack intruct dataset format only supports 1 user message" input_message = input_messages[0] @@ -37,7 +40,7 @@ def llama_stack_instruct_to_torchtune_instruct(sample: Mapping[str, Any]) -> Map def llama_stack_chat_to_torchtune_chat(sample: Mapping[str, Any]) -> Mapping[str, Any]: assert ColumnName.dialog.value in sample, "Invalid input row" role_map = {"user": "human", "assistant": "gpt"} - dialog = eval(str(sample[ColumnName.dialog.value])) + dialog = json.loads(sample[ColumnName.dialog.value]) assert len(dialog) > 1, "dialog must have at least 2 messagse" roles = []