Merge branch 'main' into add-localize-url-feature-to-openaimixin

This commit is contained in:
Matthew Farrellee 2025-09-26 16:31:59 -04:00
commit 17125fd2cf
421 changed files with 70880 additions and 5915 deletions

View file

@ -40,8 +40,9 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.models import Model
from llama_stack.log import get_logger
from llama_stack.models.llama.sku_types import CoreModelId
from llama_stack.providers.datatypes import (
HealthResponse,
HealthStatus,
@ -50,6 +51,7 @@ from llama_stack.providers.datatypes import (
from llama_stack.providers.remote.inference.ollama.config import OllamaImplConfig
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionChoice,
@ -70,8 +72,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
request_has_media,
)
from .models import MODEL_ENTRIES
logger = get_logger(name=__name__, category="inference::ollama")
@ -84,8 +84,44 @@ class OllamaInferenceAdapter(
# automatically set by the resolver when instantiating the provider
__provider_id__: str
embedding_model_metadata = {
"all-minilm:l6-v2": {
"embedding_dimension": 384,
"context_length": 512,
},
"nomic-embed-text:latest": {
"embedding_dimension": 768,
"context_length": 8192,
},
"nomic-embed-text:v1.5": {
"embedding_dimension": 768,
"context_length": 8192,
},
"nomic-embed-text:137m-v1.5-fp16": {
"embedding_dimension": 768,
"context_length": 8192,
},
}
def __init__(self, config: OllamaImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
# TODO: remove ModelRegistryHelper.__init__ when completion and
# chat_completion are. this exists to satisfy the input /
# output processing for llama models. specifically,
# tool_calling is handled by raw template processing,
# instead of using the /api/chat endpoint w/ tools=...
ModelRegistryHelper.__init__(
self,
model_entries=[
build_hf_repo_model_entry(
"llama3.2:3b-instruct-fp16",
CoreModelId.llama3_2_3b_instruct.value,
),
build_hf_repo_model_entry(
"llama-guard3:1b",
CoreModelId.llama_guard_3_1b.value,
),
],
)
self.config = config
# Ollama does not support image urls, so we need to download the image and convert it to base64
self.download_images = True
@ -116,60 +152,6 @@ class OllamaInferenceAdapter(
async def should_refresh_models(self) -> bool:
return self.config.refresh_models
async def list_models(self) -> list[Model] | None:
provider_id = self.__provider_id__
response = await self.ollama_client.list()
# always add the two embedding models which can be pulled on demand
models = [
Model(
identifier="all-minilm:l6-v2",
provider_resource_id="all-minilm:l6-v2",
provider_id=provider_id,
metadata={
"embedding_dimension": 384,
"context_length": 512,
},
model_type=ModelType.embedding,
),
# add all-minilm alias
Model(
identifier="all-minilm",
provider_resource_id="all-minilm:l6-v2",
provider_id=provider_id,
metadata={
"embedding_dimension": 384,
"context_length": 512,
},
model_type=ModelType.embedding,
),
Model(
identifier="nomic-embed-text",
provider_resource_id="nomic-embed-text:latest",
provider_id=provider_id,
metadata={
"embedding_dimension": 768,
"context_length": 8192,
},
model_type=ModelType.embedding,
),
]
for m in response.models:
# kill embedding models since we don't know dimensions for them
if "bert" in m.details.family:
continue
models.append(
Model(
identifier=m.model,
provider_resource_id=m.model,
provider_id=provider_id,
metadata={},
model_type=ModelType.llm,
)
)
self._model_cache = {m.identifier: m for m in models} # for fast check_model_availability
return models
async def health(self) -> HealthResponse:
"""
Performs a health check by verifying connectivity to the Ollama server.
@ -403,37 +385,16 @@ class OllamaInferenceAdapter(
return EmbeddingsResponse(embeddings=embeddings)
async def register_model(self, model: Model) -> Model:
try:
model = await super().register_model(model)
except ValueError:
pass # Ignore statically unknown model, will check live listing
if await self.check_model_availability(model.provider_model_id):
return model
elif await self.check_model_availability(f"{model.provider_model_id}:latest"):
model.provider_resource_id = f"{model.provider_model_id}:latest"
logger.warning(
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_model_id}'"
)
return model
if model.model_type == ModelType.embedding:
response = await self.ollama_client.list()
if model.provider_resource_id not in [m.model for m in response.models]:
await self.ollama_client.pull(model.provider_resource_id)
# we use list() here instead of ps() -
# - ps() only lists running models, not available models
# - models not currently running are run by the ollama server as needed
response = await self.ollama_client.list()
available_models = [m.model for m in response.models]
provider_resource_id = model.provider_resource_id
assert provider_resource_id is not None # mypy
if provider_resource_id not in available_models:
available_models_latest = [m.model.split(":latest")[0] for m in response.models]
if provider_resource_id in available_models_latest:
logger.warning(
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
)
return model
raise UnsupportedModelError(provider_resource_id, available_models)
# mutating this should be considered an anti-pattern
model.provider_resource_id = provider_resource_id
return model
raise UnsupportedModelError(model.provider_model_id, list(self._model_cache.keys()))
async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]: