mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 04:10:25 +00:00
Merge branch 'main' into feat/litellm_sambanova_usage
This commit is contained in:
commit
172a918fe3
66 changed files with 9320 additions and 9446 deletions
216
tests/integration/inference/test_openai_completion.py
Normal file
216
tests/integration/inference/test_openai_completion.py
Normal file
|
|
@ -0,0 +1,216 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import pytest
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
from ..test_cases.test_case import TestCase
|
||||
|
||||
|
||||
def provider_from_model(client_with_models, model_id):
|
||||
models = {m.identifier: m for m in client_with_models.models.list()}
|
||||
models.update({m.provider_resource_id: m for m in client_with_models.models.list()})
|
||||
provider_id = models[model_id].provider_id
|
||||
providers = {p.provider_id: p for p in client_with_models.providers.list()}
|
||||
return providers[provider_id]
|
||||
|
||||
|
||||
def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id):
|
||||
if isinstance(client_with_models, LlamaStackAsLibraryClient):
|
||||
pytest.skip("OpenAI completions are not supported when testing with library client yet.")
|
||||
|
||||
provider = provider_from_model(client_with_models, model_id)
|
||||
if provider.provider_type in (
|
||||
"inline::meta-reference",
|
||||
"inline::sentence-transformers",
|
||||
"inline::vllm",
|
||||
"remote::bedrock",
|
||||
"remote::cerebras",
|
||||
"remote::databricks",
|
||||
# Technically Nvidia does support OpenAI completions, but none of their hosted models
|
||||
# support both completions and chat completions endpoint and all the Llama models are
|
||||
# just chat completions
|
||||
"remote::nvidia",
|
||||
"remote::runpod",
|
||||
"remote::sambanova",
|
||||
"remote::tgi",
|
||||
):
|
||||
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.")
|
||||
|
||||
|
||||
def skip_if_model_doesnt_support_openai_chat_completion(client_with_models, model_id):
|
||||
if isinstance(client_with_models, LlamaStackAsLibraryClient):
|
||||
pytest.skip("OpenAI chat completions are not supported when testing with library client yet.")
|
||||
|
||||
provider = provider_from_model(client_with_models, model_id)
|
||||
if provider.provider_type in (
|
||||
"inline::meta-reference",
|
||||
"inline::sentence-transformers",
|
||||
"inline::vllm",
|
||||
"remote::bedrock",
|
||||
"remote::cerebras",
|
||||
"remote::databricks",
|
||||
"remote::runpod",
|
||||
"remote::sambanova",
|
||||
"remote::tgi",
|
||||
):
|
||||
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI chat completions.")
|
||||
|
||||
|
||||
def skip_if_provider_isnt_vllm(client_with_models, model_id):
|
||||
provider = provider_from_model(client_with_models, model_id)
|
||||
if provider.provider_type != "remote::vllm":
|
||||
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support vllm extra_body parameters.")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def openai_client(client_with_models):
|
||||
base_url = f"{client_with_models.base_url}/v1/openai/v1"
|
||||
return OpenAI(base_url=base_url, api_key="bar")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"inference:completion:sanity",
|
||||
],
|
||||
)
|
||||
def test_openai_completion_non_streaming(openai_client, client_with_models, text_model_id, test_case):
|
||||
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
|
||||
tc = TestCase(test_case)
|
||||
|
||||
# ollama needs more verbose prompting for some reason here...
|
||||
prompt = "Respond to this question and explain your answer. " + tc["content"]
|
||||
response = openai_client.completions.create(
|
||||
model=text_model_id,
|
||||
prompt=prompt,
|
||||
stream=False,
|
||||
)
|
||||
assert len(response.choices) > 0
|
||||
choice = response.choices[0]
|
||||
assert len(choice.text) > 10
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"inference:completion:sanity",
|
||||
],
|
||||
)
|
||||
def test_openai_completion_streaming(openai_client, client_with_models, text_model_id, test_case):
|
||||
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
|
||||
tc = TestCase(test_case)
|
||||
|
||||
# ollama needs more verbose prompting for some reason here...
|
||||
prompt = "Respond to this question and explain your answer. " + tc["content"]
|
||||
response = openai_client.completions.create(
|
||||
model=text_model_id,
|
||||
prompt=prompt,
|
||||
stream=True,
|
||||
max_tokens=50,
|
||||
)
|
||||
streamed_content = [chunk.choices[0].text for chunk in response]
|
||||
content_str = "".join(streamed_content).lower().strip()
|
||||
assert len(content_str) > 10
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"prompt_logprobs",
|
||||
[
|
||||
1,
|
||||
0,
|
||||
],
|
||||
)
|
||||
def test_openai_completion_prompt_logprobs(openai_client, client_with_models, text_model_id, prompt_logprobs):
|
||||
skip_if_provider_isnt_vllm(client_with_models, text_model_id)
|
||||
|
||||
prompt = "Hello, world!"
|
||||
response = openai_client.completions.create(
|
||||
model=text_model_id,
|
||||
prompt=prompt,
|
||||
stream=False,
|
||||
extra_body={
|
||||
"prompt_logprobs": prompt_logprobs,
|
||||
},
|
||||
)
|
||||
assert len(response.choices) > 0
|
||||
choice = response.choices[0]
|
||||
assert len(choice.prompt_logprobs) > 0
|
||||
|
||||
|
||||
def test_openai_completion_guided_choice(openai_client, client_with_models, text_model_id):
|
||||
skip_if_provider_isnt_vllm(client_with_models, text_model_id)
|
||||
|
||||
prompt = "I am feeling really sad today."
|
||||
response = openai_client.completions.create(
|
||||
model=text_model_id,
|
||||
prompt=prompt,
|
||||
stream=False,
|
||||
extra_body={
|
||||
"guided_choice": ["joy", "sadness"],
|
||||
},
|
||||
)
|
||||
assert len(response.choices) > 0
|
||||
choice = response.choices[0]
|
||||
assert choice.text in ["joy", "sadness"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"inference:chat_completion:non_streaming_01",
|
||||
"inference:chat_completion:non_streaming_02",
|
||||
],
|
||||
)
|
||||
def test_openai_chat_completion_non_streaming(openai_client, client_with_models, text_model_id, test_case):
|
||||
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
|
||||
tc = TestCase(test_case)
|
||||
question = tc["question"]
|
||||
expected = tc["expected"]
|
||||
|
||||
response = openai_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": question,
|
||||
}
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
message_content = response.choices[0].message.content.lower().strip()
|
||||
assert len(message_content) > 0
|
||||
assert expected.lower() in message_content
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"inference:chat_completion:streaming_01",
|
||||
"inference:chat_completion:streaming_02",
|
||||
],
|
||||
)
|
||||
def test_openai_chat_completion_streaming(openai_client, client_with_models, text_model_id, test_case):
|
||||
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
|
||||
tc = TestCase(test_case)
|
||||
question = tc["question"]
|
||||
expected = tc["expected"]
|
||||
|
||||
response = openai_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": question}],
|
||||
stream=True,
|
||||
timeout=120, # Increase timeout to 2 minutes for large conversation history
|
||||
)
|
||||
streamed_content = []
|
||||
for chunk in response:
|
||||
if chunk.choices[0].delta.content:
|
||||
streamed_content.append(chunk.choices[0].delta.content.lower().strip())
|
||||
assert len(streamed_content) > 0
|
||||
assert expected.lower() in "".join(streamed_content)
|
||||
Loading…
Add table
Add a link
Reference in a new issue