diff --git a/docs/docs/concepts/file_operations_vector_stores.mdx b/docs/docs/concepts/file_operations_vector_stores.mdx index 6168ecf9d..ed3c9b635 100644 --- a/docs/docs/concepts/file_operations_vector_stores.mdx +++ b/docs/docs/concepts/file_operations_vector_stores.mdx @@ -15,8 +15,10 @@ Unlike OpenAI's vector stores which use a fixed embedding model, Llama Stack all # Create vector store with specific embedding model vector_store = client.vector_stores.create( name="my_documents", - embedding_model="all-MiniLM-L6-v2", # Specify your preferred model - embedding_dimension=384, + extra_body={ + "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", # Specify your preferred model + "embedding_dimension": 384, # Optional: will be auto-detected if not provided + } ) ``` @@ -64,10 +66,17 @@ Choose from multiple vector store providers based on your specific needs: ```python # Specify provider when creating vector store vector_store = client.vector_stores.create( - name="my_documents", provider_id="sqlite-vec" # Choose your preferred provider + name="my_documents", + extra_body={ + "provider_id": "sqlite-vec", # Choose your preferred provider + "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", # Optional: specify embedding model + "embedding_dimension": 384, # Optional: will be auto-detected if not provided + } ) ``` +**Note**: All Llama Stack-specific parameters (`provider_id`, `embedding_model`, and `embedding_dimension`) must be specified in the `extra_body` parameter when creating vector stores. + ## How It Works The file operations work through several key components: @@ -113,7 +122,8 @@ with open("document.pdf", "rb") as f: ### 2. Attach to Vector Store ```python -# Create a vector store +# Create a vector store (uses defaults if configured) +# You can also specify embedding_model, embedding_dimension, and provider_id in extra_body vector_store = client.vector_stores.create(name="my_documents") # Attach the file to the vector store @@ -367,7 +377,8 @@ results = await client.vector_stores.search( ```python # Build a RAG system with file uploads async def build_rag_system(): - # Create vector store + # Create vector store (uses defaults if configured) + # You can specify embedding_model, embedding_dimension, and provider_id in extra_body if needed vector_store = client.vector_stores.create(name="knowledge_base") # Upload and process documents diff --git a/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb b/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb index 5849f2b63..7e2414c84 100644 --- a/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb +++ b/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb @@ -443,9 +443,11 @@ "vector_store = client.vector_stores.create(\n", " name=\"acme_docs\",\n", " file_ids=file_ids,\n", - " embedding_model=\"sentence-transformers/all-MiniLM-L6-v2\",\n", - " embedding_dimension=384,\n", - " provider_id=\"faiss\"\n", + " extra_body={\n", + " \"embedding_model\": \"sentence-transformers/all-MiniLM-L6-v2\",\n", + " \"embedding_dimension\": 384,\n", + " \"provider_id\": \"faiss\"\n", + " }\n", ")" ] }, diff --git a/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb b/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb index 742ac2be5..229927b61 100644 --- a/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb +++ b/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb @@ -360,9 +360,11 @@ "vector_store = client.vector_stores.create(\n", " name=\"acme_docs\",\n", " file_ids=file_ids,\n", - " embedding_model=\"sentence-transformers/all-MiniLM-L6-v2\",\n", - " embedding_dimension=384,\n", - " provider_id=\"faiss\"\n", + " extra_body={\n", + " \"embedding_model\": \"sentence-transformers/all-MiniLM-L6-v2\",\n", + " \"embedding_dimension\": 384,\n", + " \"provider_id\": \"faiss\"\n", + " }\n", ")" ] },