mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
feat(vector-io): implement global default embedding model configuration (Issue #2729)
- Add VectorStoreConfig with global default_embedding_model and default_embedding_dimension - Support environment variables LLAMA_STACK_DEFAULT_EMBEDDING_MODEL and LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION - Implement precedence: explicit model > global default > clear error (no fallback) - Update VectorIORouter with _resolve_embedding_model() precedence logic - Remove non-deterministic 'first model in run.yaml' fallback behavior - Add vector_store_config to StackRunConfig and all distribution templates - Include comprehensive unit tests for config loading and router precedence - Update documentation with configuration examples and usage patterns - Fix error messages to include 'Failed to' prefix per coding standards Resolves deterministic vector store creation by eliminating unpredictable fallbacks and providing clear configuration options at the stack level.
This commit is contained in:
parent
8422bd102a
commit
17fbd21c0d
7 changed files with 243 additions and 8 deletions
26
tests/unit/common/test_vector_store_config.py
Normal file
26
tests/unit/common/test_vector_store_config.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.vector_store_config import VectorStoreConfig
|
||||
|
||||
|
||||
def test_defaults():
|
||||
cfg = VectorStoreConfig()
|
||||
assert cfg.default_embedding_model is None
|
||||
assert cfg.default_embedding_dimension is None
|
||||
|
||||
|
||||
def test_env_loading(monkeypatch):
|
||||
monkeypatch.setenv("LLAMA_STACK_DEFAULT_EMBEDDING_MODEL", "test-model")
|
||||
monkeypatch.setenv("LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION", "123")
|
||||
|
||||
cfg = VectorStoreConfig()
|
||||
assert cfg.default_embedding_model == "test-model"
|
||||
assert cfg.default_embedding_dimension == 123
|
||||
|
||||
# Clean up
|
||||
monkeypatch.delenv("LLAMA_STACK_DEFAULT_EMBEDDING_MODEL", raising=False)
|
||||
monkeypatch.delenv("LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION", raising=False)
|
83
tests/unit/router/test_embedding_precedence.py
Normal file
83
tests/unit/router/test_embedding_precedence.py
Normal file
|
@ -0,0 +1,83 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.distribution.routers.vector_io import VectorIORouter
|
||||
|
||||
|
||||
class _DummyModel:
|
||||
def __init__(self, identifier: str, dim: int):
|
||||
self.identifier = identifier
|
||||
self.model_type = ModelType.embedding
|
||||
self.metadata = {"embedding_dimension": dim}
|
||||
|
||||
|
||||
class _DummyRoutingTable:
|
||||
"""Minimal stub satisfying the methods used by VectorIORouter in tests."""
|
||||
|
||||
def __init__(self):
|
||||
self._models: list[_DummyModel] = [
|
||||
_DummyModel("first-model", 123),
|
||||
_DummyModel("second-model", 512),
|
||||
]
|
||||
|
||||
async def get_all_with_type(self, _type: str):
|
||||
# Only embedding models requested in our tests
|
||||
return self._models
|
||||
|
||||
# The following methods are required by the VectorIORouter signature but
|
||||
# are not used in these unit tests; stub them out.
|
||||
async def register_vector_db(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_provider_impl(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_global_default_used(monkeypatch):
|
||||
"""Router should pick up global default when no explicit model is supplied."""
|
||||
|
||||
monkeypatch.setenv("LLAMA_STACK_DEFAULT_EMBEDDING_MODEL", "env-default-model")
|
||||
monkeypatch.setenv("LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION", "256")
|
||||
|
||||
router = VectorIORouter(routing_table=_DummyRoutingTable())
|
||||
|
||||
model, dim = await router._resolve_embedding_model(None)
|
||||
assert model == "env-default-model"
|
||||
assert dim == 256
|
||||
|
||||
# Cleanup env vars
|
||||
monkeypatch.delenv("LLAMA_STACK_DEFAULT_EMBEDDING_MODEL", raising=False)
|
||||
monkeypatch.delenv("LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION", raising=False)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_explicit_override(monkeypatch):
|
||||
"""Explicit model parameter should override global default."""
|
||||
|
||||
monkeypatch.setenv("LLAMA_STACK_DEFAULT_EMBEDDING_MODEL", "env-default-model")
|
||||
|
||||
router = VectorIORouter(routing_table=_DummyRoutingTable())
|
||||
|
||||
model, dim = await router._resolve_embedding_model("first-model")
|
||||
assert model == "first-model"
|
||||
assert dim == 123
|
||||
|
||||
monkeypatch.delenv("LLAMA_STACK_DEFAULT_EMBEDDING_MODEL", raising=False)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_error_when_no_default(monkeypatch):
|
||||
"""Router should raise when neither explicit nor global default is available."""
|
||||
|
||||
router = VectorIORouter(routing_table=_DummyRoutingTable())
|
||||
|
||||
with pytest.raises(RuntimeError):
|
||||
await router._resolve_embedding_model(None)
|
Loading…
Add table
Add a link
Reference in a new issue