This commit is contained in:
Xi Yan 2024-09-18 10:00:29 -07:00
parent 45a2f4809c
commit 18b3dbcacc
5 changed files with 239 additions and 0 deletions

View file

@ -0,0 +1,25 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from .config import MetaReferenceImplConfig # noqa
async def get_provider_impl(
config: MetaReferenceImplConfig, deps: Dict[Api, ProviderSpec]
):
from .models import MetaReferenceModelsImpl
assert isinstance(
config, MetaReferenceImplConfig
), f"Unexpected config type: {type(config)}"
impl = MetaReferenceModelsImpl(config, deps[Api.inference], deps[Api.safety])
await impl.initialize()
return impl

View file

@ -0,0 +1,18 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.datatypes import ModelFamily
from llama_models.schema_utils import json_schema_type
from llama_models.sku_list import all_registered_models, resolve_model
from pydantic import BaseModel, Field, field_validator
@json_schema_type
class MetaReferenceImplConfig(BaseModel): ...

View file

@ -0,0 +1,99 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
from typing import AsyncIterator, Union
from llama_models.llama3.api.datatypes import StopReason
from llama_models.sku_list import resolve_model
from llama_stack.apis.models import * # noqa: F403
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_models.datatypes import CoreModelId, Model
from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import Inference
from llama_stack.apis.safety import Safety
from llama_stack.providers.impls.meta_reference.inference.inference import (
MetaReferenceInferenceImpl,
)
from llama_stack.providers.impls.meta_reference.safety.safety import (
MetaReferenceSafetyImpl,
)
from .config import MetaReferenceImplConfig
class MetaReferenceModelsImpl(Models):
def __init__(
self,
config: MetaReferenceImplConfig,
inference_api: Inference,
safety_api: Safety,
) -> None:
self.config = config
self.inference_api = inference_api
self.safety_api = safety_api
self.models_list = []
# TODO, make the inference route provider and use router provider to do the lookup dynamically
if isinstance(
self.inference_api,
MetaReferenceInferenceImpl,
):
model = resolve_model(self.inference_api.config.model)
self.models_list.append(
ModelSpec(
llama_model_metadata=model,
providers_spec={
"inference": [{"provider_type": "meta-reference"}],
},
)
)
if isinstance(
self.safety_api,
MetaReferenceSafetyImpl,
):
shield_cfg = self.safety_api.config.llama_guard_shield
if shield_cfg is not None:
model = resolve_model(shield_cfg.model)
self.models_list.append(
ModelSpec(
llama_model_metadata=model,
providers_spec={
"safety": [{"provider_type": "meta-reference"}],
},
)
)
shield_cfg = self.safety_api.config.prompt_guard_shield
if shield_cfg is not None:
model = resolve_model(shield_cfg.model)
self.models_list.append(
ModelSpec(
llama_model_metadata=model,
providers_spec={
"safety": [{"provider_type": "meta-reference"}],
},
)
)
async def initialize(self) -> None:
pass
async def list_models(self) -> ModelsListResponse:
return ModelsListResponse(models_list=self.models_list)
async def get_model(self, model_id: str) -> ModelsGetResponse:
for model in self.models_list:
if model.llama_model_metadata.core_model_id.value == model_id:
return ModelsGetResponse(core_model_spec=model)
return ModelsGetResponse()
async def register_model(
self, model_id: str, api: str, provider_spec: Dict[str, str]
) -> ModelsRegisterResponse:
return ModelsRegisterResponse()