Merge branch 'main' into fix/issue-3797-metadata-validation

This commit is contained in:
Roy Belio 2025-11-18 17:16:40 +02:00 committed by GitHub
commit 190083d6c9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
89 changed files with 1649 additions and 793 deletions

2
.github/CODEOWNERS vendored
View file

@ -2,4 +2,4 @@
# These owners will be the default owners for everything in
# the repo. Unless a later match takes precedence,
* @ashwinb @yanxi0830 @hardikjshah @raghotham @ehhuang @terrytangyuan @leseb @bbrowning @reluctantfuturist @mattf @slekkala1 @franciscojavierarceo
* @ashwinb @yanxi0830 @hardikjshah @raghotham @ehhuang @leseb @bbrowning @reluctantfuturist @mattf @slekkala1 @franciscojavierarceo

View file

@ -48,3 +48,4 @@ jobs:
command -v llama
llama stack list-apis
llama stack list-providers inference
llama stack list-deps starter

View file

@ -199,6 +199,27 @@ repos:
echo;
exit 1;
} || true
- id: check-api-independence
name: Ensure llama_stack_api does not import llama_stack
entry: bash
language: system
pass_filenames: false
require_serial: true
always_run: true
files: ^src/llama_stack_api/.*$
args:
- -c
- |
API_DIR="src/llama_stack_api"
grep -rn --include="*.py" -E '^[^#]*(import llama_stack\b|from llama_stack\b)' "$API_DIR" 2>/dev/null && {
echo "llama_stack_api must not import llama_stack";
exit 1;
}
[ -f "$API_DIR/pyproject.toml" ] && grep -n 'llama_stack[^_]' "$API_DIR/pyproject.toml" && {
echo "llama_stack_api must not depend on llama_stack in pyproject.toml";
exit 1;
}
exit 0
ci:
autofix_commit_msg: 🎨 [pre-commit.ci] Auto format from pre-commit.com hooks

View file

@ -10,83 +10,6 @@
[**Quick Start**](https://llamastack.github.io/docs/getting_started/quickstart) | [**Documentation**](https://llamastack.github.io/docs) | [**Colab Notebook**](./docs/getting_started.ipynb) | [**Discord**](https://discord.gg/llama-stack)
### ✨🎉 Llama 4 Support 🎉✨
We released [Version 0.2.0](https://github.com/meta-llama/llama-stack/releases/tag/v0.2.0) with support for the Llama 4 herd of models released by Meta.
<details>
<summary>👋 Click here to see how to run Llama 4 models on Llama Stack </summary>
\
*Note you need 8xH100 GPU-host to run these models*
```bash
pip install -U llama_stack
MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
huggingface-cli download meta-llama/$MODEL --local-dir ~/.llama/$MODEL
# install dependencies for the distribution
llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install
# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack run meta-reference-gpu
# install client to interact with the server
pip install llama-stack-client
```
### CLI
```bash
# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"
OpenAIChatCompletion(
...
choices=[
OpenAIChatCompletionChoice(
finish_reason='stop',
index=0,
message=OpenAIChatCompletionChoiceMessageOpenAIAssistantMessageParam(
role='assistant',
content='...**Silent minds awaken,** \n**Whispers of billions of words,** \n**Reasoning breaks the night.** \n\n— \n*This haiku blends the essence of LLaMA 4\'s capabilities with nature-inspired metaphor, evoking its vast training data and transformative potential.*',
...
),
...
)
],
...
)
```
### Python SDK
```python
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:8321")
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"
print(f"User> {prompt}")
response = client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
)
print(f"Assistant> {response.choices[0].message.content}")
```
As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!
</details>
### 🚀 One-Line Installer 🚀
To try Llama Stack locally, run:

View file

@ -5,4 +5,7 @@ These are the source-of-truth configuration files used to generate the Stainless
A small side note: notice the `.yml` suffixes since Stainless uses that suffix typically for its configuration files.
These files go hand-in-hand. As of now, only the `openapi.yml` file is automatically generated using the `scripts/run_openapi_generator.sh` script.
These files go hand-in-hand. Both `openapi.yml` and `config.yml` are generated by `scripts/run_openapi_generator.sh`:
- `openapi.yml` comes from the FastAPI-based generator.
- `config.yml` is rendered from `scripts/openapi_generator/stainless_config/config_data.py` so the Stainless config stays in lock-step with the spec.

View file

@ -1,20 +1,16 @@
# yaml-language-server: $schema=https://app.stainlessapi.com/config-internal.schema.json
organization:
# Name of your organization or company, used to determine the name of the client
# and headings.
name: llama-stack-client
docs: https://llama-stack.readthedocs.io/en/latest/
contact: llamastack@meta.com
security:
- {}
- BearerAuth: []
- {}
- BearerAuth: []
security_schemes:
BearerAuth:
type: http
scheme: bearer
# `targets` define the output targets and their customization options, such as
# whether to emit the Node SDK and what it's package name should be.
targets:
node:
package_name: llama-stack-client
@ -40,27 +36,19 @@ targets:
options:
enable_v2: true
back_compat_use_shared_package: false
# `client_settings` define settings for the API client, such as extra constructor
# arguments (used for authentication), retry behavior, idempotency, etc.
client_settings:
default_env_prefix: LLAMA_STACK_CLIENT
opts:
api_key:
type: string
read_env: LLAMA_STACK_CLIENT_API_KEY
auth: { security_scheme: BearerAuth }
auth:
security_scheme: BearerAuth
nullable: true
# `environments` are a map of the name of the environment (e.g. "sandbox",
# "production") to the corresponding url to use.
environments:
production: http://any-hosted-llama-stack.com
# `pagination` defines [pagination schemes] which provides a template to match
# endpoints and generate next-page and auto-pagination helpers in the SDKs.
pagination:
- name: datasets_iterrows
- name: datasets_iterrows
type: offset
request:
dataset_id:
@ -80,7 +68,7 @@ pagination:
type: integer
x-stainless-pagination-property:
purpose: offset_count_start_field
- name: openai_cursor_page
- name: openai_cursor_page
type: cursor
request:
limit:
@ -99,12 +87,72 @@ pagination:
type: string
x-stainless-pagination-property:
purpose: next_cursor_field
# `resources` define the structure and organziation for your API, such as how
# methods and models are grouped together and accessed. See the [configuration
# guide] for more information.
#
# [configuration guide]:
# https://app.stainlessapi.com/docs/guides/configure#resources
settings:
license: MIT
unwrap_response_fields:
- data
file_header: 'Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the terms described in the LICENSE file in
the root directory of this source tree.
'
openapi:
transformations:
- command: mergeObject
reason: Better return_type using enum
args:
target:
- $.components.schemas
object:
ReturnType:
additionalProperties: false
properties:
type:
enum:
- string
- number
- boolean
- array
- object
- json
- union
- chat_completion_input
- completion_input
- agent_turn_input
required:
- type
type: object
- command: replaceProperties
reason: Replace return type properties with better model (see above)
args:
filter:
only:
- $.components.schemas.ScoringFn.properties.return_type
- $.components.schemas.RegisterScoringFunctionRequest.properties.return_type
value:
$ref: '#/components/schemas/ReturnType'
- command: oneOfToAnyOf
reason: Prism (mock server) doesn't like one of our requests as it technically
matches multiple variants
readme:
example_requests:
default:
type: request
endpoint: post /v1/chat/completions
params: {}
headline:
type: request
endpoint: get /v1/models
params: {}
pagination:
type: request
endpoint: post /v1/chat/completions
params: {}
resources:
$shared:
models:
@ -128,19 +176,17 @@ resources:
methods:
get: get /v1/tools/{tool_name}
list:
endpoint: get /v1/tools
paginated: false
endpoint: get /v1/tools
tool_runtime:
models:
tool_def: ToolDef
tool_invocation_result: ToolInvocationResult
methods:
list_tools:
endpoint: get /v1/tool-runtime/list-tools
paginated: false
endpoint: get /v1/tool-runtime/list-tools
invoke_tool: post /v1/tool-runtime/invoke
responses:
models:
response_object_stream: OpenAIResponseObjectStream
@ -148,10 +194,10 @@ resources:
methods:
create:
type: http
endpoint: post /v1/responses
streaming:
stream_event_model: responses.response_object_stream
param_discriminator: stream
endpoint: post /v1/responses
retrieve: get /v1/responses/{response_id}
list:
type: http
@ -164,9 +210,8 @@ resources:
methods:
list:
type: http
endpoint: get /v1/responses/{response_id}/input_items
paginated: false
endpoint: get /v1/responses/{response_id}/input_items
prompts:
models:
prompt: Prompt
@ -174,8 +219,8 @@ resources:
methods:
create: post /v1/prompts
list:
endpoint: get /v1/prompts
paginated: false
endpoint: get /v1/prompts
retrieve: get /v1/prompts/{prompt_id}
update: post /v1/prompts/{prompt_id}
delete: delete /v1/prompts/{prompt_id}
@ -184,9 +229,8 @@ resources:
versions:
methods:
list:
endpoint: get /v1/prompts/{prompt_id}/versions
paginated: false
endpoint: get /v1/prompts/{prompt_id}/versions
conversations:
models:
conversation_object: Conversation
@ -216,7 +260,6 @@ resources:
delete:
type: http
endpoint: delete /v1/conversations/{conversation_id}/items/{item_id}
inspect:
models:
healthInfo: HealthInfo
@ -226,13 +269,11 @@ resources:
methods:
health: get /v1/health
version: get /v1/version
embeddings:
models:
create_embeddings_response: OpenAIEmbeddingsResponse
methods:
create: post /v1/embeddings
chat:
models:
chat_completion_chunk: OpenAIChatCompletionChunk
@ -241,14 +282,14 @@ resources:
methods:
create:
type: http
endpoint: post /v1/chat/completions
streaming:
stream_event_model: chat.chat_completion_chunk
param_discriminator: stream
endpoint: post /v1/chat/completions
list:
type: http
endpoint: get /v1/chat/completions
paginated: false
endpoint: get /v1/chat/completions
retrieve:
type: http
endpoint: get /v1/chat/completions/{completion_id}
@ -256,17 +297,15 @@ resources:
methods:
create:
type: http
endpoint: post /v1/completions
streaming:
param_discriminator: stream
endpoint: post /v1/completions
vector_io:
models:
queryChunksResponse: QueryChunksResponse
methods:
insert: post /v1/vector-io/insert
query: post /v1/vector-io/query
vector_stores:
models:
vector_store: VectorStoreObject
@ -275,8 +314,7 @@ resources:
vector_store_search_response: VectorStoreSearchResponsePage
methods:
create: post /v1/vector_stores
list:
endpoint: get /v1/vector_stores
list: get /v1/vector_stores
retrieve: get /v1/vector_stores/{vector_store_id}
update: post /v1/vector_stores/{vector_store_id}
delete: delete /v1/vector_stores/{vector_store_id}
@ -301,15 +339,14 @@ resources:
retrieve: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}
list_files: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files
cancel: post /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel
models:
models:
model: OpenAIModel
list_models_response: OpenAIListModelsResponse
methods:
list:
endpoint: get /v1/models
paginated: false
endpoint: get /v1/models
retrieve: get /v1/models/{model_id}
register: post /v1/models
unregister: delete /v1/models/{model_id}
@ -317,38 +354,33 @@ resources:
openai:
methods:
list:
endpoint: get /v1/models
paginated: false
endpoint: get /v1/models
providers:
models:
list_providers_response: ListProvidersResponse
methods:
list:
endpoint: get /v1/providers
paginated: false
endpoint: get /v1/providers
retrieve: get /v1/providers/{provider_id}
routes:
models:
list_routes_response: ListRoutesResponse
methods:
list:
endpoint: get /v1/inspect/routes
paginated: false
endpoint: get /v1/inspect/routes
moderations:
models:
create_response: ModerationObject
methods:
create: post /v1/moderations
safety:
models:
run_shield_response: RunShieldResponse
methods:
run_shield: post /v1/safety/run-shield
shields:
models:
shield: Shield
@ -356,53 +388,48 @@ resources:
methods:
retrieve: get /v1/shields/{identifier}
list:
endpoint: get /v1/shields
paginated: false
endpoint: get /v1/shields
register: post /v1/shields
delete: delete /v1/shields/{identifier}
scoring:
methods:
score: post /v1/scoring/score
score_batch: post /v1/scoring/score-batch
scoring_functions:
methods:
retrieve: get /v1/scoring-functions/{scoring_fn_id}
list:
endpoint: get /v1/scoring-functions
paginated: false
register: post /v1/scoring-functions
unregister: delete /v1/scoring-functions/{scoring_fn_id}
models:
scoring_fn: ScoringFn
scoring_fn_params: ScoringFnParams
list_scoring_functions_response: ListScoringFunctionsResponse
methods:
retrieve: get /v1/scoring-functions/{scoring_fn_id}
list:
paginated: false
endpoint: get /v1/scoring-functions
register: post /v1/scoring-functions
unregister: delete /v1/scoring-functions/{scoring_fn_id}
files:
models:
file: OpenAIFileObject
list_files_response: ListOpenAIFileResponse
delete_file_response: OpenAIFileDeleteResponse
methods:
create: post /v1/files
list: get /v1/files
retrieve: get /v1/files/{file_id}
delete: delete /v1/files/{file_id}
content: get /v1/files/{file_id}/content
models:
file: OpenAIFileObject
list_files_response: ListOpenAIFileResponse
delete_file_response: OpenAIFileDeleteResponse
batches:
methods:
create: post /v1/batches
list: get /v1/batches
retrieve: get /v1/batches/{batch_id}
cancel: post /v1/batches/{batch_id}/cancel
alpha:
subresources:
inference:
methods:
rerank: post /v1alpha/inference/rerank
post_training:
models:
algorithm_config: AlgorithmConfig
@ -418,39 +445,35 @@ resources:
cancel: post /v1alpha/post-training/job/cancel
status: get /v1alpha/post-training/job/status
list:
paginated: false
endpoint: get /v1alpha/post-training/jobs
paginated: false
benchmarks:
methods:
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}
list:
endpoint: get /v1alpha/eval/benchmarks
paginated: false
register: post /v1alpha/eval/benchmarks
unregister: delete /v1alpha/eval/benchmarks/{benchmark_id}
models:
benchmark: Benchmark
list_benchmarks_response: ListBenchmarksResponse
methods:
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}
list:
paginated: false
endpoint: get /v1alpha/eval/benchmarks
register: post /v1alpha/eval/benchmarks
unregister: delete /v1alpha/eval/benchmarks/{benchmark_id}
eval:
models:
evaluate_response: EvaluateResponse
benchmark_config: BenchmarkConfig
job: Job
methods:
evaluate_rows: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
evaluate_rows_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
subresources:
jobs:
methods:
cancel: delete /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
status: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result
models:
evaluate_response: EvaluateResponse
benchmark_config: BenchmarkConfig
job: Job
beta:
subresources:
datasets:
@ -460,74 +483,8 @@ resources:
register: post /v1beta/datasets
retrieve: get /v1beta/datasets/{dataset_id}
list:
endpoint: get /v1beta/datasets
paginated: false
endpoint: get /v1beta/datasets
unregister: delete /v1beta/datasets/{dataset_id}
iterrows: get /v1beta/datasetio/iterrows/{dataset_id}
appendrows: post /v1beta/datasetio/append-rows/{dataset_id}
settings:
license: MIT
unwrap_response_fields: [data]
file_header: |
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the terms described in the LICENSE file in
the root directory of this source tree.
openapi:
transformations:
- command: mergeObject
reason: Better return_type using enum
args:
target:
- "$.components.schemas"
object:
ReturnType:
additionalProperties: false
properties:
type:
enum:
- string
- number
- boolean
- array
- object
- json
- union
- chat_completion_input
- completion_input
- agent_turn_input
required:
- type
type: object
- command: replaceProperties
reason: Replace return type properties with better model (see above)
args:
filter:
only:
- "$.components.schemas.ScoringFn.properties.return_type"
- "$.components.schemas.RegisterScoringFunctionRequest.properties.return_type"
value:
$ref: "#/components/schemas/ReturnType"
- command: oneOfToAnyOf
reason: Prism (mock server) doesn't like one of our requests as it technically matches multiple variants
# `readme` is used to configure the code snippets that will be rendered in the
# README.md of various SDKs. In particular, you can change the `headline`
# snippet's endpoint and the arguments to call it with.
readme:
example_requests:
default:
type: request
endpoint: post /v1/chat/completions
params: &ref_0 {}
headline:
type: request
endpoint: get /v1/models
params: *ref_0
pagination:
type: request
endpoint: post /v1/chat/completions
params: {}

View file

@ -1810,7 +1810,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterScoringFunctionRequestLoose'
$ref: '#/components/schemas/RegisterScoringFunctionRequest'
required: true
deprecated: true
/v1/scoring-functions/{scoring_fn_id}:
@ -3300,7 +3300,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterDatasetRequestLoose'
$ref: '#/components/schemas/RegisterDatasetRequest'
required: true
deprecated: true
/v1beta/datasets/{dataset_id}:
@ -3557,7 +3557,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/BenchmarkConfig'
$ref: '#/components/schemas/RunEvalRequest'
required: true
/v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}:
get:
@ -10598,6 +10598,14 @@ components:
- scores
title: EvaluateResponse
description: The response from an evaluation.
RunEvalRequest:
properties:
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
type: object
required:
- benchmark_config
title: RunEvalRequest
Job:
properties:
job_id:
@ -11181,6 +11189,67 @@ components:
- $ref: '#/components/schemas/CompletionInputType'
title: CompletionInputType
title: StringType | ... (9 variants)
RegisterScoringFunctionRequest:
properties:
scoring_fn_id:
type: string
title: Scoring Fn Id
description:
type: string
title: Description
return_type:
anyOf:
- $ref: '#/components/schemas/StringType'
title: StringType
- $ref: '#/components/schemas/NumberType'
title: NumberType
- $ref: '#/components/schemas/BooleanType'
title: BooleanType
- $ref: '#/components/schemas/ArrayType'
title: ArrayType
- $ref: '#/components/schemas/ObjectType'
title: ObjectType
- $ref: '#/components/schemas/JsonType'
title: JsonType
- $ref: '#/components/schemas/UnionType'
title: UnionType
- $ref: '#/components/schemas/ChatCompletionInputType'
title: ChatCompletionInputType
- $ref: '#/components/schemas/CompletionInputType'
title: CompletionInputType
title: StringType | ... (9 variants)
provider_scoring_fn_id:
anyOf:
- type: string
- type: 'null'
provider_id:
anyOf:
- type: string
- type: 'null'
params:
anyOf:
- oneOf:
- $ref: '#/components/schemas/LLMAsJudgeScoringFnParams'
title: LLMAsJudgeScoringFnParams
- $ref: '#/components/schemas/RegexParserScoringFnParams'
title: RegexParserScoringFnParams
- $ref: '#/components/schemas/BasicScoringFnParams'
title: BasicScoringFnParams
discriminator:
propertyName: type
mapping:
basic: '#/components/schemas/BasicScoringFnParams'
llm_as_judge: '#/components/schemas/LLMAsJudgeScoringFnParams'
regex_parser: '#/components/schemas/RegexParserScoringFnParams'
title: LLMAsJudgeScoringFnParams | RegexParserScoringFnParams | BasicScoringFnParams
- type: 'null'
title: Params
type: object
required:
- scoring_fn_id
- description
- return_type
title: RegisterScoringFunctionRequest
RegisterShieldRequest:
properties:
shield_id:
@ -11239,6 +11308,31 @@ components:
- $ref: '#/components/schemas/RowsDataSource'
title: RowsDataSource
title: URIDataSource | RowsDataSource
RegisterDatasetRequest:
properties:
purpose:
$ref: '#/components/schemas/DatasetPurpose'
source:
anyOf:
- $ref: '#/components/schemas/URIDataSource'
title: URIDataSource
- $ref: '#/components/schemas/RowsDataSource'
title: RowsDataSource
title: URIDataSource | RowsDataSource
metadata:
anyOf:
- additionalProperties: true
type: object
- type: 'null'
dataset_id:
anyOf:
- type: string
- type: 'null'
type: object
required:
- purpose
- source
title: RegisterDatasetRequest
RegisterBenchmarkRequest:
properties:
benchmark_id:
@ -11975,41 +12069,6 @@ components:
required:
- reasoning_tokens
title: OutputTokensDetails
RegisterDatasetRequestLoose:
properties:
purpose:
title: Purpose
source:
title: Source
metadata:
title: Metadata
dataset_id:
title: Dataset Id
type: object
required:
- purpose
- source
title: RegisterDatasetRequestLoose
RegisterScoringFunctionRequestLoose:
properties:
scoring_fn_id:
title: Scoring Fn Id
description:
title: Description
return_type:
title: Return Type
provider_scoring_fn_id:
title: Provider Scoring Fn Id
provider_id:
title: Provider Id
params:
title: Params
type: object
required:
- scoring_fn_id
- description
- return_type
title: RegisterScoringFunctionRequestLoose
SearchRankingOptions:
properties:
ranker:

View file

@ -104,23 +104,19 @@ client.toolgroups.register(
)
```
Note that most of the more useful MCP servers need you to authenticate with them. Many of them use OAuth2.0 for authentication. You can provide authorization headers to send to the MCP server using the "Provider Data" abstraction provided by Llama Stack. When making an agent call,
Note that most of the more useful MCP servers need you to authenticate with them. Many of them use OAuth2.0 for authentication. You can provide the authorization token when creating the Agent:
```python
agent = Agent(
...,
tools=["mcp::deepwiki"],
extra_headers={
"X-LlamaStack-Provider-Data": json.dumps(
tools=[
{
"mcp_headers": {
"http://mcp.deepwiki.com/sse": {
"Authorization": "Bearer <your_access_token>",
},
},
"type": "mcp",
"server_url": "https://mcp.deepwiki.com/sse",
"server_label": "mcp::deepwiki",
"authorization": "<your_access_token>", # OAuth token (without "Bearer " prefix)
}
),
},
],
)
agent.create_turn(...)
```

View file

@ -1,7 +1,8 @@
---
description: "Agents
description: |
Agents
APIs for creating and interacting with agentic systems."
APIs for creating and interacting with agentic systems.
sidebar_label: Agents
title: Agents
---

View file

@ -14,7 +14,7 @@ Meta's reference implementation of an agent system that can use tools, access ve
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `persistence` | `<class 'inline.agents.meta_reference.config.AgentPersistenceConfig'>` | No | | |
| `persistence` | `AgentPersistenceConfig` | No | | |
## Sample Configuration

View file

@ -1,5 +1,6 @@
---
description: "The Batches API enables efficient processing of multiple requests in a single operation,
description: |
The Batches API enables efficient processing of multiple requests in a single operation,
particularly useful for processing large datasets, batch evaluation workflows, and
cost-effective inference at scale.
@ -8,7 +9,7 @@ description: "The Batches API enables efficient processing of multiple requests
This API provides the following extensions:
- idempotent batch creation
Note: This API is currently under active development and may undergo changes."
Note: This API is currently under active development and may undergo changes.
sidebar_label: Batches
title: Batches
---

View file

@ -14,9 +14,9 @@ Reference implementation of batches API with KVStore persistence.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Configuration for the key-value store backend. |
| `max_concurrent_batches` | `<class 'int'>` | No | 1 | Maximum number of concurrent batches to process simultaneously. |
| `max_concurrent_requests_per_batch` | `<class 'int'>` | No | 10 | Maximum number of concurrent requests to process per batch. |
| `kvstore` | `KVStoreReference` | No | | Configuration for the key-value store backend. |
| `max_concurrent_batches` | `int` | No | 1 | Maximum number of concurrent batches to process simultaneously. |
| `max_concurrent_requests_per_batch` | `int` | No | 10 | Maximum number of concurrent requests to process per batch. |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Local filesystem-based dataset I/O provider for reading and writing datasets to
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `KVStoreReference` | No | | |
## Sample Configuration

View file

@ -14,7 +14,7 @@ HuggingFace datasets provider for accessing and managing datasets from the Huggi
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `KVStoreReference` | No | | |
## Sample Configuration

View file

@ -17,7 +17,7 @@ NVIDIA's dataset I/O provider for accessing datasets from NVIDIA's data platform
| `api_key` | `str \| None` | No | | The NVIDIA API key. |
| `dataset_namespace` | `str \| None` | No | default | The NVIDIA dataset namespace. |
| `project_id` | `str \| None` | No | test-project | The NVIDIA project ID. |
| `datasets_url` | `<class 'str'>` | No | http://nemo.test | Base URL for the NeMo Dataset API |
| `datasets_url` | `str` | No | http://nemo.test | Base URL for the NeMo Dataset API |
## Sample Configuration

View file

@ -1,7 +1,8 @@
---
description: "Evaluations
description: |
Evaluations
Llama Stack Evaluation API for running evaluations on model and agent candidates."
Llama Stack Evaluation API for running evaluations on model and agent candidates.
sidebar_label: Eval
title: Eval
---

View file

@ -14,7 +14,7 @@ Meta's reference implementation of evaluation tasks with support for multiple la
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `KVStoreReference` | No | | |
## Sample Configuration

View file

@ -14,7 +14,7 @@ NVIDIA's evaluation provider for running evaluation tasks on NVIDIA's platform.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `evaluator_url` | `<class 'str'>` | No | http://0.0.0.0:7331 | The url for accessing the evaluator service |
| `evaluator_url` | `str` | No | http://0.0.0.0:7331 | The url for accessing the evaluator service |
## Sample Configuration

View file

@ -1,7 +1,8 @@
---
description: "Files
description: |
Files
This API is used to upload documents that can be used with other Llama Stack APIs."
This API is used to upload documents that can be used with other Llama Stack APIs.
sidebar_label: Files
title: Files
---

View file

@ -14,9 +14,9 @@ Local filesystem-based file storage provider for managing files and documents lo
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `storage_dir` | `<class 'str'>` | No | | Directory to store uploaded files |
| `metadata_store` | `<class 'llama_stack.core.storage.datatypes.SqlStoreReference'>` | No | | SQL store configuration for file metadata |
| `ttl_secs` | `<class 'int'>` | No | 31536000 | |
| `storage_dir` | `str` | No | | Directory to store uploaded files |
| `metadata_store` | `SqlStoreReference` | No | | SQL store configuration for file metadata |
| `ttl_secs` | `int` | No | 31536000 | |
## Sample Configuration

View file

@ -14,8 +14,8 @@ OpenAI Files API provider for managing files through OpenAI's native file storag
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `<class 'str'>` | No | | OpenAI API key for authentication |
| `metadata_store` | `<class 'llama_stack.core.storage.datatypes.SqlStoreReference'>` | No | | SQL store configuration for file metadata |
| `api_key` | `str` | No | | OpenAI API key for authentication |
| `metadata_store` | `SqlStoreReference` | No | | SQL store configuration for file metadata |
## Sample Configuration

View file

@ -14,13 +14,13 @@ AWS S3-based file storage provider for scalable cloud file management with metad
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `bucket_name` | `<class 'str'>` | No | | S3 bucket name to store files |
| `region` | `<class 'str'>` | No | us-east-1 | AWS region where the bucket is located |
| `bucket_name` | `str` | No | | S3 bucket name to store files |
| `region` | `str` | No | us-east-1 | AWS region where the bucket is located |
| `aws_access_key_id` | `str \| None` | No | | AWS access key ID (optional if using IAM roles) |
| `aws_secret_access_key` | `str \| None` | No | | AWS secret access key (optional if using IAM roles) |
| `endpoint_url` | `str \| None` | No | | Custom S3 endpoint URL (for MinIO, LocalStack, etc.) |
| `auto_create_bucket` | `<class 'bool'>` | No | False | Automatically create the S3 bucket if it doesn't exist |
| `metadata_store` | `<class 'llama_stack.core.storage.datatypes.SqlStoreReference'>` | No | | SQL store configuration for file metadata |
| `auto_create_bucket` | `bool` | No | False | Automatically create the S3 bucket if it doesn't exist |
| `metadata_store` | `SqlStoreReference` | No | | SQL store configuration for file metadata |
## Sample Configuration

View file

@ -1,12 +1,13 @@
---
description: "Inference
description: |
Inference
Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Three kinds of models are supported:
- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search.
- Rerank models: these models reorder the documents based on their relevance to a query."
- Rerank models: these models reorder the documents based on their relevance to a query.
sidebar_label: Inference
title: Inference
---

View file

@ -16,12 +16,12 @@ Meta's reference implementation of inference with support for various model form
|-------|------|----------|---------|-------------|
| `model` | `str \| None` | No | | |
| `torch_seed` | `int \| None` | No | | |
| `max_seq_len` | `<class 'int'>` | No | 4096 | |
| `max_batch_size` | `<class 'int'>` | No | 1 | |
| `max_seq_len` | `int` | No | 4096 | |
| `max_batch_size` | `int` | No | 1 | |
| `model_parallel_size` | `int \| None` | No | | |
| `create_distributed_process_group` | `<class 'bool'>` | No | True | |
| `create_distributed_process_group` | `bool` | No | True | |
| `checkpoint_dir` | `str \| None` | No | | |
| `quantization` | `Bf16QuantizationConfig \| Fp8QuantizationConfig \| Int4QuantizationConfig, annotation=NoneType, required=True, discriminator='type'` | No | | |
| `quantization` | `Bf16QuantizationConfig \| Fp8QuantizationConfig \| Int4QuantizationConfig \| None` | No | | |
## Sample Configuration

View file

@ -14,9 +14,9 @@ Anthropic inference provider for accessing Claude models and Anthropic's AI serv
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
## Sample Configuration

View file

@ -21,10 +21,10 @@ https://learn.microsoft.com/en-us/azure/ai-foundry/openai/overview
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `api_base` | `<class 'pydantic.networks.HttpUrl'>` | No | | Azure API base for Azure (e.g., https://your-resource-name.openai.azure.com) |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `api_base` | `HttpUrl` | No | | Azure API base for Azure (e.g., https://your-resource-name.openai.azure.com) |
| `api_version` | `str \| None` | No | | Azure API version for Azure (e.g., 2024-12-01-preview) |
| `api_type` | `str \| None` | No | azure | Azure API type for Azure (e.g., azure) |

View file

@ -14,10 +14,10 @@ AWS Bedrock inference provider using OpenAI compatible endpoint.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `region_name` | `<class 'str'>` | No | us-east-2 | AWS Region for the Bedrock Runtime endpoint |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `region_name` | `str` | No | us-east-2 | AWS Region for the Bedrock Runtime endpoint |
## Sample Configuration

View file

@ -14,10 +14,10 @@ Cerebras inference provider for running models on Cerebras Cloud platform.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `base_url` | `<class 'str'>` | No | https://api.cerebras.ai | Base URL for the Cerebras API |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `base_url` | `str` | No | https://api.cerebras.ai | Base URL for the Cerebras API |
## Sample Configuration

View file

@ -14,9 +14,9 @@ Databricks inference provider for running models on Databricks' unified analytic
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | The Databricks API token |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_token` | `SecretStr \| None` | No | | The Databricks API token |
| `url` | `str \| None` | No | | The URL for the Databricks model serving endpoint |
## Sample Configuration

View file

@ -14,10 +14,10 @@ Fireworks AI inference provider for Llama models and other AI models on the Fire
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | https://api.fireworks.ai/inference/v1 | The URL for the Fireworks server |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `str` | No | https://api.fireworks.ai/inference/v1 | The URL for the Fireworks server |
## Sample Configuration

View file

@ -14,9 +14,9 @@ Google Gemini inference provider for accessing Gemini models and Google's AI ser
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
## Sample Configuration

View file

@ -14,10 +14,10 @@ Groq inference provider for ultra-fast inference using Groq's LPU technology.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | https://api.groq.com | The URL for the Groq AI server |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `str` | No | https://api.groq.com | The URL for the Groq AI server |
## Sample Configuration

View file

@ -14,8 +14,8 @@ HuggingFace Inference Endpoints provider for dedicated model serving.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `endpoint_name` | `<class 'str'>` | No | | The name of the Hugging Face Inference Endpoint in the format of '&#123;namespace&#125;/&#123;endpoint_name&#125;' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided. |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
| `endpoint_name` | `str` | No | | The name of the Hugging Face Inference Endpoint in the format of '&#123;namespace&#125;/&#123;endpoint_name&#125;' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided. |
| `api_token` | `SecretStr \| None` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
## Sample Configuration

View file

@ -14,8 +14,8 @@ HuggingFace Inference API serverless provider for on-demand model inference.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `huggingface_repo` | `<class 'str'>` | No | | The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct') |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
| `huggingface_repo` | `str` | No | | The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct') |
| `api_token` | `SecretStr \| None` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
## Sample Configuration

View file

@ -14,10 +14,10 @@ Llama OpenAI-compatible provider for using Llama models with OpenAI API format.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.llama.com/compat/v1/ | The URL for the Llama API server |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `openai_compat_api_base` | `str` | No | https://api.llama.com/compat/v1/ | The URL for the Llama API server |
## Sample Configuration

View file

@ -14,13 +14,13 @@ NVIDIA inference provider for accessing NVIDIA NIM models and AI services.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | https://integrate.api.nvidia.com | A base url for accessing the NVIDIA NIM |
| `timeout` | `<class 'int'>` | No | 60 | Timeout for the HTTP requests |
| `append_api_version` | `<class 'bool'>` | No | True | When set to false, the API version will not be appended to the base_url. By default, it is true. |
| `rerank_model_to_url` | `dict[str, str` | No | `{'nv-rerank-qa-mistral-4b:1': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/reranking', 'nvidia/nv-rerankqa-mistral-4b-v3': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/nv-rerankqa-mistral-4b-v3/reranking', 'nvidia/llama-3.2-nv-rerankqa-1b-v2': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/llama-3_2-nv-rerankqa-1b-v2/reranking'}` | Mapping of rerank model identifiers to their API endpoints. |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `str` | No | https://integrate.api.nvidia.com | A base url for accessing the NVIDIA NIM |
| `timeout` | `int` | No | 60 | Timeout for the HTTP requests |
| `append_api_version` | `bool` | No | True | When set to false, the API version will not be appended to the base_url. By default, it is true. |
| `rerank_model_to_url` | `dict[str, str]` | No | `{'nv-rerank-qa-mistral-4b:1': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/reranking', 'nvidia/nv-rerankqa-mistral-4b-v3': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/nv-rerankqa-mistral-4b-v3/reranking', 'nvidia/llama-3.2-nv-rerankqa-1b-v2': 'https://ai.api.nvidia.com/v1/retrieval/nvidia/llama-3_2-nv-rerankqa-1b-v2/reranking'}` | Mapping of rerank model identifiers to their API endpoints. |
## Sample Configuration

View file

@ -21,14 +21,14 @@ https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `oci_auth_type` | `<class 'str'>` | No | instance_principal | OCI authentication type (must be one of: instance_principal, config_file) |
| `oci_region` | `<class 'str'>` | No | us-ashburn-1 | OCI region (e.g., us-ashburn-1) |
| `oci_compartment_id` | `<class 'str'>` | No | | OCI compartment ID for the Generative AI service |
| `oci_config_file_path` | `<class 'str'>` | No | ~/.oci/config | OCI config file path (required if oci_auth_type is config_file) |
| `oci_config_profile` | `<class 'str'>` | No | DEFAULT | OCI config profile (required if oci_auth_type is config_file) |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `oci_auth_type` | `str` | No | instance_principal | OCI authentication type (must be one of: instance_principal, config_file) |
| `oci_region` | `str` | No | us-ashburn-1 | OCI region (e.g., us-ashburn-1) |
| `oci_compartment_id` | `str` | No | | OCI compartment ID for the Generative AI service |
| `oci_config_file_path` | `str` | No | ~/.oci/config | OCI config file path (required if oci_auth_type is config_file) |
| `oci_config_profile` | `str` | No | DEFAULT | OCI config profile (required if oci_auth_type is config_file) |
## Sample Configuration

View file

@ -14,9 +14,9 @@ Ollama inference provider for running local models through the Ollama runtime.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `url` | `<class 'str'>` | No | http://localhost:11434 | |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `url` | `str` | No | http://localhost:11434 | |
## Sample Configuration

View file

@ -14,10 +14,10 @@ OpenAI inference provider for accessing GPT models and other OpenAI services.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `base_url` | `<class 'str'>` | No | https://api.openai.com/v1 | Base URL for OpenAI API |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `base_url` | `str` | No | https://api.openai.com/v1 | Base URL for OpenAI API |
## Sample Configuration

View file

@ -14,10 +14,10 @@ Passthrough inference provider for connecting to any external inference service
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | | The URL for the passthrough endpoint |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `str` | No | | The URL for the passthrough endpoint |
## Sample Configuration

View file

@ -14,9 +14,9 @@ RunPod inference provider for running models on RunPod's cloud GPU platform.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | The API token |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_token` | `SecretStr \| None` | No | | The API token |
| `url` | `str \| None` | No | | The URL for the Runpod model serving endpoint |
## Sample Configuration

View file

@ -14,10 +14,10 @@ SambaNova inference provider for running models on SambaNova's dataflow architec
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | https://api.sambanova.ai/v1 | The URL for the SambaNova AI server |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `str` | No | https://api.sambanova.ai/v1 | The URL for the SambaNova AI server |
## Sample Configuration

View file

@ -14,9 +14,9 @@ Text Generation Inference (TGI) provider for HuggingFace model serving.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `url` | `<class 'str'>` | No | | The URL for the TGI serving endpoint |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `url` | `str` | No | | The URL for the TGI serving endpoint |
## Sample Configuration

View file

@ -14,10 +14,10 @@ Together AI inference provider for open-source models and collaborative AI devel
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | https://api.together.xyz/v1 | The URL for the Together AI server |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `str` | No | https://api.together.xyz/v1 | The URL for the Together AI server |
## Sample Configuration

View file

@ -53,10 +53,10 @@ Available Models:
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `project` | `<class 'str'>` | No | | Google Cloud project ID for Vertex AI |
| `location` | `<class 'str'>` | No | us-central1 | Google Cloud location for Vertex AI |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `project` | `str` | No | | Google Cloud project ID for Vertex AI |
| `location` | `str` | No | us-central1 | Google Cloud location for Vertex AI |
## Sample Configuration

View file

@ -14,11 +14,11 @@ Remote vLLM inference provider for connecting to vLLM servers.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | The API token |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_token` | `SecretStr \| None` | No | | The API token |
| `url` | `str \| None` | No | | The URL for the vLLM model serving endpoint |
| `max_tokens` | `<class 'int'>` | No | 4096 | Maximum number of tokens to generate. |
| `max_tokens` | `int` | No | 4096 | Maximum number of tokens to generate. |
| `tls_verify` | `bool \| str` | No | True | Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file. |
## Sample Configuration

View file

@ -14,12 +14,12 @@ IBM WatsonX inference provider for accessing AI models on IBM's WatsonX platform
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | https://us-south.ml.cloud.ibm.com | A base url for accessing the watsonx.ai |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `str` | No | https://us-south.ml.cloud.ibm.com | A base url for accessing the watsonx.ai |
| `project_id` | `str \| None` | No | | The watsonx.ai project ID |
| `timeout` | `<class 'int'>` | No | 60 | Timeout for the HTTP requests |
| `timeout` | `int` | No | 60 | Timeout for the HTTP requests |
## Sample Configuration

View file

@ -14,23 +14,23 @@ HuggingFace-based post-training provider for fine-tuning models using the Huggin
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `device` | `<class 'str'>` | No | cuda | |
| `distributed_backend` | `Literal['fsdp', 'deepspeed'` | No | | |
| `checkpoint_format` | `Literal['full_state', 'huggingface'` | No | huggingface | |
| `chat_template` | `<class 'str'>` | No | `&lt;|user|&gt;`<br/>`{input}`<br/>`&lt;|assistant|&gt;`<br/>`{output}` | |
| `model_specific_config` | `<class 'dict'>` | No | `{'trust_remote_code': True, 'attn_implementation': 'sdpa'}` | |
| `max_seq_length` | `<class 'int'>` | No | 2048 | |
| `gradient_checkpointing` | `<class 'bool'>` | No | False | |
| `save_total_limit` | `<class 'int'>` | No | 3 | |
| `logging_steps` | `<class 'int'>` | No | 10 | |
| `warmup_ratio` | `<class 'float'>` | No | 0.1 | |
| `weight_decay` | `<class 'float'>` | No | 0.01 | |
| `dataloader_num_workers` | `<class 'int'>` | No | 4 | |
| `dataloader_pin_memory` | `<class 'bool'>` | No | True | |
| `dpo_beta` | `<class 'float'>` | No | 0.1 | |
| `use_reference_model` | `<class 'bool'>` | No | True | |
| `dpo_loss_type` | `Literal['sigmoid', 'hinge', 'ipo', 'kto_pair'` | No | sigmoid | |
| `dpo_output_dir` | `<class 'str'>` | No | | |
| `device` | `str` | No | cuda | |
| `distributed_backend` | `Literal[fsdp, deepspeed] \| None` | No | | |
| `checkpoint_format` | `Literal[full_state, huggingface] \| None` | No | huggingface | |
| `chat_template` | `str` | No | `&lt;|user|&gt;`<br/>`{input}`<br/>`&lt;|assistant|&gt;`<br/>`{output}` | |
| `model_specific_config` | `dict` | No | `{'trust_remote_code': True, 'attn_implementation': 'sdpa'}` | |
| `max_seq_length` | `int` | No | 2048 | |
| `gradient_checkpointing` | `bool` | No | False | |
| `save_total_limit` | `int` | No | 3 | |
| `logging_steps` | `int` | No | 10 | |
| `warmup_ratio` | `float` | No | 0.1 | |
| `weight_decay` | `float` | No | 0.01 | |
| `dataloader_num_workers` | `int` | No | 4 | |
| `dataloader_pin_memory` | `bool` | No | True | |
| `dpo_beta` | `float` | No | 0.1 | |
| `use_reference_model` | `bool` | No | True | |
| `dpo_loss_type` | `Literal[sigmoid, hinge, ipo, kto_pair]` | No | sigmoid | |
| `dpo_output_dir` | `str` | No | | |
## Sample Configuration

View file

@ -15,7 +15,7 @@ TorchTune-based post-training provider for fine-tuning and optimizing models usi
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `torch_seed` | `int \| None` | No | | |
| `checkpoint_format` | `Literal['meta', 'huggingface'` | No | meta | |
| `checkpoint_format` | `Literal[meta, huggingface] \| None` | No | meta | |
## Sample Configuration

View file

@ -15,7 +15,7 @@ TorchTune-based post-training provider for fine-tuning and optimizing models usi
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `torch_seed` | `int \| None` | No | | |
| `checkpoint_format` | `Literal['meta', 'huggingface'` | No | meta | |
| `checkpoint_format` | `Literal[meta, huggingface] \| None` | No | meta | |
## Sample Configuration

View file

@ -18,9 +18,9 @@ NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.
| `dataset_namespace` | `str \| None` | No | default | The NVIDIA dataset namespace. |
| `project_id` | `str \| None` | No | test-example-model@v1 | The NVIDIA project ID. |
| `customizer_url` | `str \| None` | No | | Base URL for the NeMo Customizer API |
| `timeout` | `<class 'int'>` | No | 300 | Timeout for the NVIDIA Post Training API |
| `max_retries` | `<class 'int'>` | No | 3 | Maximum number of retries for the NVIDIA Post Training API |
| `output_model_dir` | `<class 'str'>` | No | test-example-model@v1 | Directory to save the output model |
| `timeout` | `int` | No | 300 | Timeout for the NVIDIA Post Training API |
| `max_retries` | `int` | No | 3 | Maximum number of retries for the NVIDIA Post Training API |
| `output_model_dir` | `str` | No | test-example-model@v1 | Directory to save the output model |
## Sample Configuration

View file

@ -1,7 +1,8 @@
---
description: "Safety
description: |
Safety
OpenAI-compatible Moderations API."
OpenAI-compatible Moderations API.
sidebar_label: Safety
title: Safety
---

View file

@ -14,7 +14,7 @@ Llama Guard safety provider for content moderation and safety filtering using Me
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `excluded_categories` | `list[str` | No | [] | |
| `excluded_categories` | `list[str]` | No | [] | |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Prompt Guard safety provider for detecting and filtering unsafe prompts and cont
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `guard_type` | `<class 'str'>` | No | injection | |
| `guard_type` | `str` | No | injection | |
## Sample Configuration

View file

@ -14,8 +14,8 @@ AWS Bedrock safety provider for content moderation using AWS's safety services.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `allowed_models` | `list[str] \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `bool` | No | False | Whether to refresh models periodically from the provider |
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
| `aws_secret_access_key` | `str \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
| `aws_session_token` | `str \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |

View file

@ -14,7 +14,7 @@ NVIDIA's safety provider for content moderation and safety filtering.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `guardrails_service_url` | `<class 'str'>` | No | http://0.0.0.0:7331 | The url for accessing the Guardrails service |
| `guardrails_service_url` | `str` | No | http://0.0.0.0:7331 | The url for accessing the Guardrails service |
| `config_id` | `str \| None` | No | self-check | Guardrails configuration ID to use from the Guardrails configuration store |
## Sample Configuration

View file

@ -14,8 +14,8 @@ SambaNova's safety provider for content moderation and safety filtering.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `<class 'str'>` | No | https://api.sambanova.ai/v1 | The URL for the SambaNova AI server |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The SambaNova cloud API Key |
| `url` | `str` | No | https://api.sambanova.ai/v1 | The URL for the SambaNova AI server |
| `api_key` | `SecretStr \| None` | No | | The SambaNova cloud API Key |
## Sample Configuration

View file

@ -15,7 +15,7 @@ Bing Search tool for web search capabilities using Microsoft's search engine.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | |
| `top_k` | `<class 'int'>` | No | 3 | |
| `top_k` | `int` | No | 3 | |
## Sample Configuration

View file

@ -15,7 +15,7 @@ Brave Search tool for web search capabilities with privacy-focused results.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Brave Search API Key |
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
| `max_results` | `int` | No | 3 | The maximum number of results to return |
## Sample Configuration

View file

@ -15,7 +15,7 @@ Tavily Search tool for AI-optimized web search with structured results.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Tavily Search API Key |
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
| `max_results` | `int` | No | 3 | The maximum number of results to return |
## Sample Configuration

View file

@ -78,8 +78,8 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend |
| `db_path` | `str` | No | | |
| `persistence` | `KVStoreReference` | No | | Config for KV store backend |
## Sample Configuration

View file

@ -95,7 +95,7 @@ more details about Faiss in general.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `persistence` | `KVStoreReference` | No | | |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Meta's reference implementation of a vector database.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `persistence` | `KVStoreReference` | No | | |
## Sample Configuration

View file

@ -16,9 +16,9 @@ Please refer to the remote provider documentation.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend (SQLite only for now) |
| `consistency_level` | `<class 'str'>` | No | Strong | The consistency level of the Milvus server |
| `db_path` | `str` | No | | |
| `persistence` | `KVStoreReference` | No | | Config for KV store backend (SQLite only for now) |
| `consistency_level` | `str` | No | Strong | The consistency level of the Milvus server |
## Sample Configuration

View file

@ -97,8 +97,8 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `path` | `<class 'str'>` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `path` | `str` | No | | |
| `persistence` | `KVStoreReference` | No | | |
## Sample Configuration

View file

@ -407,8 +407,8 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | Path to the SQLite database file |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend (SQLite only for now) |
| `db_path` | `str` | No | | Path to the SQLite database file |
| `persistence` | `KVStoreReference` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration

View file

@ -16,8 +16,8 @@ Please refer to the sqlite-vec provider documentation.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | Path to the SQLite database file |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend (SQLite only for now) |
| `db_path` | `str` | No | | Path to the SQLite database file |
| `persistence` | `KVStoreReference` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration

View file

@ -78,7 +78,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `str \| None` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend |
| `persistence` | `KVStoreReference` | No | | Config for KV store backend |
## Sample Configuration

View file

@ -405,10 +405,10 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `uri` | `<class 'str'>` | No | | The URI of the Milvus server |
| `uri` | `str` | No | | The URI of the Milvus server |
| `token` | `str \| None` | No | | The token of the Milvus server |
| `consistency_level` | `<class 'str'>` | No | Strong | The consistency level of the Milvus server |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend |
| `consistency_level` | `str` | No | Strong | The consistency level of the Milvus server |
| `persistence` | `KVStoreReference` | No | | Config for KV store backend |
| `config` | `dict` | No | `{}` | This configuration allows additional fields to be passed through to the underlying Milvus client. See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general. |
:::note

View file

@ -218,7 +218,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
| `db` | `str \| None` | No | postgres | |
| `user` | `str \| None` | No | postgres | |
| `password` | `str \| None` | No | mysecretpassword | |
| `persistence` | `llama_stack.core.storage.datatypes.KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) |
| `persistence` | `KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration

View file

@ -19,14 +19,14 @@ Please refer to the inline provider documentation.
| `location` | `str \| None` | No | | |
| `url` | `str \| None` | No | | |
| `port` | `int \| None` | No | 6333 | |
| `grpc_port` | `<class 'int'>` | No | 6334 | |
| `prefer_grpc` | `<class 'bool'>` | No | False | |
| `grpc_port` | `int` | No | 6334 | |
| `prefer_grpc` | `bool` | No | False | |
| `https` | `bool \| None` | No | | |
| `api_key` | `str \| None` | No | | |
| `prefix` | `str \| None` | No | | |
| `timeout` | `int \| None` | No | | |
| `host` | `str \| None` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `persistence` | `KVStoreReference` | No | | |
## Sample Configuration

View file

@ -75,7 +75,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|-------|------|----------|---------|-------------|
| `weaviate_api_key` | `str \| None` | No | | The API key for the Weaviate instance |
| `weaviate_cluster_url` | `str \| None` | No | localhost:8080 | The URL of the Weaviate cluster |
| `persistence` | `llama_stack.core.storage.datatypes.KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) |
| `persistence` | `KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration

View file

@ -193,7 +193,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterScoringFunctionRequestLoose'
$ref: '#/components/schemas/RegisterScoringFunctionRequest'
required: true
deprecated: true
/v1/scoring-functions/{scoring_fn_id}:
@ -549,7 +549,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterDatasetRequestLoose'
$ref: '#/components/schemas/RegisterDatasetRequest'
required: true
deprecated: true
/v1beta/datasets/{dataset_id}:
@ -7441,6 +7441,14 @@ components:
- scores
title: EvaluateResponse
description: The response from an evaluation.
RunEvalRequest:
properties:
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
type: object
required:
- benchmark_config
title: RunEvalRequest
Job:
properties:
job_id:
@ -8024,6 +8032,67 @@ components:
- $ref: '#/components/schemas/CompletionInputType'
title: CompletionInputType
title: StringType | ... (9 variants)
RegisterScoringFunctionRequest:
properties:
scoring_fn_id:
type: string
title: Scoring Fn Id
description:
type: string
title: Description
return_type:
anyOf:
- $ref: '#/components/schemas/StringType'
title: StringType
- $ref: '#/components/schemas/NumberType'
title: NumberType
- $ref: '#/components/schemas/BooleanType'
title: BooleanType
- $ref: '#/components/schemas/ArrayType'
title: ArrayType
- $ref: '#/components/schemas/ObjectType'
title: ObjectType
- $ref: '#/components/schemas/JsonType'
title: JsonType
- $ref: '#/components/schemas/UnionType'
title: UnionType
- $ref: '#/components/schemas/ChatCompletionInputType'
title: ChatCompletionInputType
- $ref: '#/components/schemas/CompletionInputType'
title: CompletionInputType
title: StringType | ... (9 variants)
provider_scoring_fn_id:
anyOf:
- type: string
- type: 'null'
provider_id:
anyOf:
- type: string
- type: 'null'
params:
anyOf:
- oneOf:
- $ref: '#/components/schemas/LLMAsJudgeScoringFnParams'
title: LLMAsJudgeScoringFnParams
- $ref: '#/components/schemas/RegexParserScoringFnParams'
title: RegexParserScoringFnParams
- $ref: '#/components/schemas/BasicScoringFnParams'
title: BasicScoringFnParams
discriminator:
propertyName: type
mapping:
basic: '#/components/schemas/BasicScoringFnParams'
llm_as_judge: '#/components/schemas/LLMAsJudgeScoringFnParams'
regex_parser: '#/components/schemas/RegexParserScoringFnParams'
title: LLMAsJudgeScoringFnParams | RegexParserScoringFnParams | BasicScoringFnParams
- type: 'null'
title: Params
type: object
required:
- scoring_fn_id
- description
- return_type
title: RegisterScoringFunctionRequest
RegisterShieldRequest:
properties:
shield_id:
@ -8082,6 +8151,31 @@ components:
- $ref: '#/components/schemas/RowsDataSource'
title: RowsDataSource
title: URIDataSource | RowsDataSource
RegisterDatasetRequest:
properties:
purpose:
$ref: '#/components/schemas/DatasetPurpose'
source:
anyOf:
- $ref: '#/components/schemas/URIDataSource'
title: URIDataSource
- $ref: '#/components/schemas/RowsDataSource'
title: RowsDataSource
title: URIDataSource | RowsDataSource
metadata:
anyOf:
- additionalProperties: true
type: object
- type: 'null'
dataset_id:
anyOf:
- type: string
- type: 'null'
type: object
required:
- purpose
- source
title: RegisterDatasetRequest
RegisterBenchmarkRequest:
properties:
benchmark_id:
@ -8818,41 +8912,6 @@ components:
required:
- reasoning_tokens
title: OutputTokensDetails
RegisterDatasetRequestLoose:
properties:
purpose:
title: Purpose
source:
title: Source
metadata:
title: Metadata
dataset_id:
title: Dataset Id
type: object
required:
- purpose
- source
title: RegisterDatasetRequestLoose
RegisterScoringFunctionRequestLoose:
properties:
scoring_fn_id:
title: Scoring Fn Id
description:
title: Description
return_type:
title: Return Type
provider_scoring_fn_id:
title: Provider Scoring Fn Id
provider_id:
title: Provider Id
params:
title: Params
type: object
required:
- scoring_fn_id
- description
- return_type
title: RegisterScoringFunctionRequestLoose
SearchRankingOptions:
properties:
ranker:

View file

@ -300,7 +300,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/BenchmarkConfig'
$ref: '#/components/schemas/RunEvalRequest'
required: true
/v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}:
get:
@ -6723,6 +6723,14 @@ components:
- scores
title: EvaluateResponse
description: The response from an evaluation.
RunEvalRequest:
properties:
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
type: object
required:
- benchmark_config
title: RunEvalRequest
Job:
properties:
job_id:

View file

@ -1810,7 +1810,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterScoringFunctionRequestLoose'
$ref: '#/components/schemas/RegisterScoringFunctionRequest'
required: true
deprecated: true
/v1/scoring-functions/{scoring_fn_id}:
@ -3300,7 +3300,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterDatasetRequestLoose'
$ref: '#/components/schemas/RegisterDatasetRequest'
required: true
deprecated: true
/v1beta/datasets/{dataset_id}:
@ -3557,7 +3557,7 @@ paths:
content:
application/json:
schema:
$ref: '#/components/schemas/BenchmarkConfig'
$ref: '#/components/schemas/RunEvalRequest'
required: true
/v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}:
get:
@ -10598,6 +10598,14 @@ components:
- scores
title: EvaluateResponse
description: The response from an evaluation.
RunEvalRequest:
properties:
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
type: object
required:
- benchmark_config
title: RunEvalRequest
Job:
properties:
job_id:
@ -11181,6 +11189,67 @@ components:
- $ref: '#/components/schemas/CompletionInputType'
title: CompletionInputType
title: StringType | ... (9 variants)
RegisterScoringFunctionRequest:
properties:
scoring_fn_id:
type: string
title: Scoring Fn Id
description:
type: string
title: Description
return_type:
anyOf:
- $ref: '#/components/schemas/StringType'
title: StringType
- $ref: '#/components/schemas/NumberType'
title: NumberType
- $ref: '#/components/schemas/BooleanType'
title: BooleanType
- $ref: '#/components/schemas/ArrayType'
title: ArrayType
- $ref: '#/components/schemas/ObjectType'
title: ObjectType
- $ref: '#/components/schemas/JsonType'
title: JsonType
- $ref: '#/components/schemas/UnionType'
title: UnionType
- $ref: '#/components/schemas/ChatCompletionInputType'
title: ChatCompletionInputType
- $ref: '#/components/schemas/CompletionInputType'
title: CompletionInputType
title: StringType | ... (9 variants)
provider_scoring_fn_id:
anyOf:
- type: string
- type: 'null'
provider_id:
anyOf:
- type: string
- type: 'null'
params:
anyOf:
- oneOf:
- $ref: '#/components/schemas/LLMAsJudgeScoringFnParams'
title: LLMAsJudgeScoringFnParams
- $ref: '#/components/schemas/RegexParserScoringFnParams'
title: RegexParserScoringFnParams
- $ref: '#/components/schemas/BasicScoringFnParams'
title: BasicScoringFnParams
discriminator:
propertyName: type
mapping:
basic: '#/components/schemas/BasicScoringFnParams'
llm_as_judge: '#/components/schemas/LLMAsJudgeScoringFnParams'
regex_parser: '#/components/schemas/RegexParserScoringFnParams'
title: LLMAsJudgeScoringFnParams | RegexParserScoringFnParams | BasicScoringFnParams
- type: 'null'
title: Params
type: object
required:
- scoring_fn_id
- description
- return_type
title: RegisterScoringFunctionRequest
RegisterShieldRequest:
properties:
shield_id:
@ -11239,6 +11308,31 @@ components:
- $ref: '#/components/schemas/RowsDataSource'
title: RowsDataSource
title: URIDataSource | RowsDataSource
RegisterDatasetRequest:
properties:
purpose:
$ref: '#/components/schemas/DatasetPurpose'
source:
anyOf:
- $ref: '#/components/schemas/URIDataSource'
title: URIDataSource
- $ref: '#/components/schemas/RowsDataSource'
title: RowsDataSource
title: URIDataSource | RowsDataSource
metadata:
anyOf:
- additionalProperties: true
type: object
- type: 'null'
dataset_id:
anyOf:
- type: string
- type: 'null'
type: object
required:
- purpose
- source
title: RegisterDatasetRequest
RegisterBenchmarkRequest:
properties:
benchmark_id:
@ -11975,41 +12069,6 @@ components:
required:
- reasoning_tokens
title: OutputTokensDetails
RegisterDatasetRequestLoose:
properties:
purpose:
title: Purpose
source:
title: Source
metadata:
title: Metadata
dataset_id:
title: Dataset Id
type: object
required:
- purpose
- source
title: RegisterDatasetRequestLoose
RegisterScoringFunctionRequestLoose:
properties:
scoring_fn_id:
title: Scoring Fn Id
description:
title: Description
return_type:
title: Return Type
provider_scoring_fn_id:
title: Provider Scoring Fn Id
provider_id:
title: Provider Id
params:
title: Params
type: object
required:
- scoring_fn_id
- description
- return_type
title: RegisterScoringFunctionRequestLoose
SearchRankingOptions:
properties:
ranker:

View file

@ -38,7 +38,6 @@ dependencies = [
"pyjwt[crypto]>=2.10.0", # Pull crypto to support RS256 for jwt. Requires 2.10.0+ for ssl_context support.
"pydantic>=2.11.9",
"rich",
"starlette",
"termcolor",
"tiktoken",
"pillow",
@ -50,7 +49,6 @@ dependencies = [
"aiosqlite>=0.21.0", # server - for metadata store
"asyncpg", # for metadata store
"sqlalchemy[asyncio]>=2.0.41", # server - for conversations
"pyyaml>=6.0.2",
"starlette>=0.49.1",
]

View file

@ -11,6 +11,13 @@ This module provides functionality to generate OpenAPI specifications
from FastAPI applications.
"""
from .main import generate_openapi_spec, main
__all__ = ["generate_openapi_spec", "main"]
def __getattr__(name: str):
if name in {"generate_openapi_spec", "main"}:
from .main import generate_openapi_spec as _gos
from .main import main as _main
return {"generate_openapi_spec": _gos, "main": _main}[name]
raise AttributeError(name)

View file

@ -15,6 +15,7 @@ import typing
from typing import Annotated, Any, get_args, get_origin
from fastapi import FastAPI
from fastapi.params import Body as FastAPIBody
from pydantic import Field, create_model
from llama_stack.log import get_logger
@ -26,6 +27,8 @@ from .state import _extra_body_fields, register_dynamic_model
logger = get_logger(name=__name__, category="core")
type QueryParameter = tuple[str, type, Any, bool]
def _to_pascal_case(segment: str) -> str:
tokens = re.findall(r"[A-Za-z]+|\d+", segment)
@ -75,12 +78,12 @@ def _create_endpoint_with_request_model(
return endpoint
def _build_field_definitions(query_parameters: list[tuple[str, type, Any]], use_any: bool = False) -> dict[str, tuple]:
def _build_field_definitions(query_parameters: list[QueryParameter], use_any: bool = False) -> dict[str, tuple]:
"""Build field definitions for a Pydantic model from query parameters."""
from typing import Any
field_definitions = {}
for param_name, param_type, default_value in query_parameters:
for param_name, param_type, default_value, _ in query_parameters:
if use_any:
field_definitions[param_name] = (Any, ... if default_value is inspect.Parameter.empty else default_value)
continue
@ -108,10 +111,10 @@ def _build_field_definitions(query_parameters: list[tuple[str, type, Any]], use_
field_definitions[param_name] = (Any, ... if default_value is inspect.Parameter.empty else default_value)
# Ensure all parameters are included
expected_params = {name for name, _, _ in query_parameters}
expected_params = {name for name, _, _, _ in query_parameters}
missing = expected_params - set(field_definitions.keys())
if missing:
for param_name, _, default_value in query_parameters:
for param_name, _, default_value, _ in query_parameters:
if param_name in missing:
field_definitions[param_name] = (
Any,
@ -126,7 +129,7 @@ def _create_dynamic_request_model(
webmethod,
method_name: str,
http_method: str,
query_parameters: list[tuple[str, type, Any]],
query_parameters: list[QueryParameter],
use_any: bool = False,
variant_suffix: str | None = None,
) -> type | None:
@ -143,12 +146,12 @@ def _create_dynamic_request_model(
def _build_signature_params(
query_parameters: list[tuple[str, type, Any]],
query_parameters: list[QueryParameter],
) -> tuple[list[inspect.Parameter], dict[str, type]]:
"""Build signature parameters and annotations from query parameters."""
signature_params = []
param_annotations = {}
for param_name, param_type, default_value in query_parameters:
for param_name, param_type, default_value, _ in query_parameters:
param_annotations[param_name] = param_type
signature_params.append(
inspect.Parameter(
@ -219,6 +222,19 @@ def _is_extra_body_field(metadata_item: Any) -> bool:
return isinstance(metadata_item, ExtraBodyField)
def _should_embed_parameter(param_type: Any) -> bool:
"""Determine whether a parameter should be embedded (wrapped) in the request body."""
if get_origin(param_type) is Annotated:
args = get_args(param_type)
metadata = args[1:] if len(args) > 1 else []
for metadata_item in metadata:
if isinstance(metadata_item, FastAPIBody):
# FastAPI treats embed=None as False, so default to False when unset.
return bool(metadata_item.embed)
# Unannotated parameters default to embed=True through create_dynamic_typed_route.
return True
def _is_async_iterator_type(type_obj: Any) -> bool:
"""Check if a type is AsyncIterator or AsyncIterable."""
from collections.abc import AsyncIterable, AsyncIterator
@ -282,7 +298,7 @@ def _find_models_for_endpoint(
Returns:
tuple: (request_model, response_model, query_parameters, file_form_params, streaming_response_model, response_schema_name)
where query_parameters is a list of (name, type, default_value) tuples
where query_parameters is a list of (name, type, default_value, should_embed) tuples
and file_form_params is a list of inspect.Parameter objects for File()/Form() params
and streaming_response_model is the model for streaming responses (AsyncIterator content)
"""
@ -299,7 +315,7 @@ def _find_models_for_endpoint(
# Find request model and collect all body parameters
request_model = None
query_parameters = []
query_parameters: list[QueryParameter] = []
file_form_params = []
path_params = set()
extra_body_params = []
@ -325,6 +341,7 @@ def _find_models_for_endpoint(
# Check if it's a File() or Form() parameter - these need special handling
param_type = param.annotation
param_should_embed = _should_embed_parameter(param_type)
if _is_file_or_form_param(param_type):
# File() and Form() parameters must be in the function signature directly
# They cannot be part of a Pydantic model
@ -350,30 +367,14 @@ def _find_models_for_endpoint(
# Store as extra body parameter - exclude from request model
extra_body_params.append((param_name, base_type, extra_body_description))
continue
param_type = base_type
# Check if it's a Pydantic model (for POST/PUT requests)
if hasattr(param_type, "model_json_schema"):
# Collect all body parameters including Pydantic models
# We'll decide later whether to use a single model or create a combined one
query_parameters.append((param_name, param_type, param.default))
elif get_origin(param_type) is Annotated:
# Handle Annotated types - get the base type
args = get_args(param_type)
if args and hasattr(args[0], "model_json_schema"):
# Collect Pydantic models from Annotated types
query_parameters.append((param_name, args[0], param.default))
query_parameters.append((param_name, param_type, param.default, param_should_embed))
else:
# Regular annotated parameter (but not File/Form, already handled above)
query_parameters.append((param_name, param_type, param.default))
else:
# This is likely a body parameter for POST/PUT or query parameter for GET
# Store the parameter info for later use
# Preserve inspect.Parameter.empty to distinguish "no default" from "default=None"
default_value = param.default
# Extract the base type from union types (e.g., str | None -> str)
# Also make it safe for FastAPI to avoid forward reference issues
query_parameters.append((param_name, param_type, default_value))
query_parameters.append((param_name, param_type, param.default, param_should_embed))
# Store extra body fields for later use in post-processing
# We'll store them when the endpoint is created, as we need the full path
@ -385,8 +386,8 @@ def _find_models_for_endpoint(
# Otherwise, we'll create a combined request model from all parameters
# BUT: For GET requests, never create a request body - all parameters should be query parameters
if is_post_put and len(query_parameters) == 1:
param_name, param_type, default_value = query_parameters[0]
if hasattr(param_type, "model_json_schema"):
param_name, param_type, default_value, should_embed = query_parameters[0]
if hasattr(param_type, "model_json_schema") and not should_embed:
request_model = param_type
query_parameters = [] # Clear query_parameters so we use the single model
@ -495,7 +496,7 @@ def _create_fastapi_endpoint(app: FastAPI, route, webmethod, api: Api):
if file_form_params and is_post_put:
signature_params = list(file_form_params)
param_annotations = {param.name: param.annotation for param in file_form_params}
for param_name, param_type, default_value in query_parameters:
for param_name, param_type, default_value, _ in query_parameters:
signature_params.append(
inspect.Parameter(
param_name,

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Package marker for Stainless config generation.

View file

@ -0,0 +1,821 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from __future__ import annotations
from collections.abc import Iterator
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any
import yaml
HEADER = "# yaml-language-server: $schema=https://app.stainlessapi.com/config-internal.schema.json\n\n"
SECTION_ORDER = [
"organization",
"security",
"security_schemes",
"targets",
"client_settings",
"environments",
"pagination",
"settings",
"openapi",
"readme",
"resources",
]
ORGANIZATION = {
"name": "llama-stack-client",
"docs": "https://llama-stack.readthedocs.io/en/latest/",
"contact": "llamastack@meta.com",
}
SECURITY = [{}, {"BearerAuth": []}]
SECURITY_SCHEMES = {"BearerAuth": {"type": "http", "scheme": "bearer"}}
TARGETS = {
"node": {
"package_name": "llama-stack-client",
"production_repo": "llamastack/llama-stack-client-typescript",
"publish": {"npm": False},
},
"python": {
"package_name": "llama_stack_client",
"production_repo": "llamastack/llama-stack-client-python",
"options": {"use_uv": True},
"publish": {"pypi": True},
"project_name": "llama_stack_client",
},
"kotlin": {
"reverse_domain": "com.llama_stack_client.api",
"production_repo": None,
"publish": {"maven": False},
},
"go": {
"package_name": "llama-stack-client",
"production_repo": "llamastack/llama-stack-client-go",
"options": {"enable_v2": True, "back_compat_use_shared_package": False},
},
}
CLIENT_SETTINGS = {
"default_env_prefix": "LLAMA_STACK_CLIENT",
"opts": {
"api_key": {
"type": "string",
"read_env": "LLAMA_STACK_CLIENT_API_KEY",
"auth": {"security_scheme": "BearerAuth"},
"nullable": True,
}
},
}
ENVIRONMENTS = {"production": "http://any-hosted-llama-stack.com"}
PAGINATION = [
{
"name": "datasets_iterrows",
"type": "offset",
"request": {
"dataset_id": {"type": "string"},
"start_index": {
"type": "integer",
"x-stainless-pagination-property": {"purpose": "offset_count_param"},
},
"limit": {"type": "integer"},
},
"response": {
"data": {"type": "array", "items": {"type": "object"}},
"next_index": {
"type": "integer",
"x-stainless-pagination-property": {"purpose": "offset_count_start_field"},
},
},
},
{
"name": "openai_cursor_page",
"type": "cursor",
"request": {
"limit": {"type": "integer"},
"after": {
"type": "string",
"x-stainless-pagination-property": {"purpose": "next_cursor_param"},
},
},
"response": {
"data": {"type": "array", "items": {}},
"has_more": {"type": "boolean"},
"last_id": {
"type": "string",
"x-stainless-pagination-property": {"purpose": "next_cursor_field"},
},
},
},
]
SETTINGS = {
"license": "MIT",
"unwrap_response_fields": ["data"],
"file_header": "Copyright (c) Meta Platforms, Inc. and affiliates.\n"
"All rights reserved.\n"
"\n"
"This source code is licensed under the terms described in the "
"LICENSE file in\n"
"the root directory of this source tree.\n",
}
OPENAPI = {
"transformations": [
{
"command": "mergeObject",
"reason": "Better return_type using enum",
"args": {
"target": ["$.components.schemas"],
"object": {
"ReturnType": {
"additionalProperties": False,
"properties": {
"type": {
"enum": [
"string",
"number",
"boolean",
"array",
"object",
"json",
"union",
"chat_completion_input",
"completion_input",
"agent_turn_input",
]
}
},
"required": ["type"],
"type": "object",
}
},
},
},
{
"command": "replaceProperties",
"reason": "Replace return type properties with better model (see above)",
"args": {
"filter": {
"only": [
"$.components.schemas.ScoringFn.properties.return_type",
"$.components.schemas.RegisterScoringFunctionRequest.properties.return_type",
]
},
"value": {"$ref": "#/components/schemas/ReturnType"},
},
},
{
"command": "oneOfToAnyOf",
"reason": "Prism (mock server) doesn't like one of our "
"requests as it technically matches multiple "
"variants",
},
]
}
README = {
"example_requests": {
"default": {
"type": "request",
"endpoint": "post /v1/chat/completions",
"params": {},
},
"headline": {"type": "request", "endpoint": "get /v1/models", "params": {}},
"pagination": {
"type": "request",
"endpoint": "post /v1/chat/completions",
"params": {},
},
}
}
ALL_RESOURCES = {
"$shared": {
"models": {
"interleaved_content_item": "InterleavedContentItem",
"interleaved_content": "InterleavedContent",
"param_type": "ParamType",
"safety_violation": "SafetyViolation",
"sampling_params": "SamplingParams",
"scoring_result": "ScoringResult",
"system_message": "SystemMessage",
}
},
"toolgroups": {
"models": {
"tool_group": "ToolGroup",
"list_tool_groups_response": "ListToolGroupsResponse",
},
"methods": {
"register": "post /v1/toolgroups",
"get": "get /v1/toolgroups/{toolgroup_id}",
"list": "get /v1/toolgroups",
"unregister": "delete /v1/toolgroups/{toolgroup_id}",
},
},
"tools": {
"methods": {
"get": "get /v1/tools/{tool_name}",
"list": {"paginated": False, "endpoint": "get /v1/tools"},
}
},
"tool_runtime": {
"models": {
"tool_def": "ToolDef",
"tool_invocation_result": "ToolInvocationResult",
},
"methods": {
"list_tools": {
"paginated": False,
"endpoint": "get /v1/tool-runtime/list-tools",
},
"invoke_tool": "post /v1/tool-runtime/invoke",
},
},
"responses": {
"models": {
"response_object_stream": "OpenAIResponseObjectStream",
"response_object": "OpenAIResponseObject",
},
"methods": {
"create": {
"type": "http",
"streaming": {
"stream_event_model": "responses.response_object_stream",
"param_discriminator": "stream",
},
"endpoint": "post /v1/responses",
},
"retrieve": "get /v1/responses/{response_id}",
"list": {"type": "http", "endpoint": "get /v1/responses"},
"delete": {
"type": "http",
"endpoint": "delete /v1/responses/{response_id}",
},
},
"subresources": {
"input_items": {
"methods": {
"list": {
"type": "http",
"paginated": False,
"endpoint": "get /v1/responses/{response_id}/input_items",
}
}
}
},
},
"prompts": {
"models": {"prompt": "Prompt", "list_prompts_response": "ListPromptsResponse"},
"methods": {
"create": "post /v1/prompts",
"list": {"paginated": False, "endpoint": "get /v1/prompts"},
"retrieve": "get /v1/prompts/{prompt_id}",
"update": "post /v1/prompts/{prompt_id}",
"delete": "delete /v1/prompts/{prompt_id}",
"set_default_version": "post /v1/prompts/{prompt_id}/set-default-version",
},
"subresources": {
"versions": {
"methods": {
"list": {
"paginated": False,
"endpoint": "get /v1/prompts/{prompt_id}/versions",
}
}
}
},
},
"conversations": {
"models": {"conversation_object": "Conversation"},
"methods": {
"create": {"type": "http", "endpoint": "post /v1/conversations"},
"retrieve": "get /v1/conversations/{conversation_id}",
"update": {
"type": "http",
"endpoint": "post /v1/conversations/{conversation_id}",
},
"delete": {
"type": "http",
"endpoint": "delete /v1/conversations/{conversation_id}",
},
},
"subresources": {
"items": {
"methods": {
"get": {
"type": "http",
"endpoint": "get /v1/conversations/{conversation_id}/items/{item_id}",
},
"list": {
"type": "http",
"endpoint": "get /v1/conversations/{conversation_id}/items",
},
"create": {
"type": "http",
"endpoint": "post /v1/conversations/{conversation_id}/items",
},
"delete": {
"type": "http",
"endpoint": "delete /v1/conversations/{conversation_id}/items/{item_id}",
},
}
}
},
},
"inspect": {
"models": {
"healthInfo": "HealthInfo",
"providerInfo": "ProviderInfo",
"routeInfo": "RouteInfo",
"versionInfo": "VersionInfo",
},
"methods": {"health": "get /v1/health", "version": "get /v1/version"},
},
"embeddings": {
"models": {"create_embeddings_response": "OpenAIEmbeddingsResponse"},
"methods": {"create": "post /v1/embeddings"},
},
"chat": {
"models": {"chat_completion_chunk": "OpenAIChatCompletionChunk"},
"subresources": {
"completions": {
"methods": {
"create": {
"type": "http",
"streaming": {
"stream_event_model": "chat.chat_completion_chunk",
"param_discriminator": "stream",
},
"endpoint": "post /v1/chat/completions",
},
"list": {
"type": "http",
"paginated": False,
"endpoint": "get /v1/chat/completions",
},
"retrieve": {
"type": "http",
"endpoint": "get /v1/chat/completions/{completion_id}",
},
}
}
},
},
"completions": {
"methods": {
"create": {
"type": "http",
"streaming": {"param_discriminator": "stream"},
"endpoint": "post /v1/completions",
}
}
},
"vector_io": {
"models": {"queryChunksResponse": "QueryChunksResponse"},
"methods": {
"insert": "post /v1/vector-io/insert",
"query": "post /v1/vector-io/query",
},
},
"vector_stores": {
"models": {
"vector_store": "VectorStoreObject",
"list_vector_stores_response": "VectorStoreListResponse",
"vector_store_delete_response": "VectorStoreDeleteResponse",
"vector_store_search_response": "VectorStoreSearchResponsePage",
},
"methods": {
"create": "post /v1/vector_stores",
"list": "get /v1/vector_stores",
"retrieve": "get /v1/vector_stores/{vector_store_id}",
"update": "post /v1/vector_stores/{vector_store_id}",
"delete": "delete /v1/vector_stores/{vector_store_id}",
"search": "post /v1/vector_stores/{vector_store_id}/search",
},
"subresources": {
"files": {
"models": {"vector_store_file": "VectorStoreFileObject"},
"methods": {
"list": "get /v1/vector_stores/{vector_store_id}/files",
"retrieve": "get /v1/vector_stores/{vector_store_id}/files/{file_id}",
"update": "post /v1/vector_stores/{vector_store_id}/files/{file_id}",
"delete": "delete /v1/vector_stores/{vector_store_id}/files/{file_id}",
"create": "post /v1/vector_stores/{vector_store_id}/files",
"content": "get /v1/vector_stores/{vector_store_id}/files/{file_id}/content",
},
},
"file_batches": {
"models": {
"vector_store_file_batches": "VectorStoreFileBatchObject",
"list_vector_store_files_in_batch_response": "VectorStoreFilesListInBatchResponse",
},
"methods": {
"create": "post /v1/vector_stores/{vector_store_id}/file_batches",
"retrieve": "get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}",
"list_files": "get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
"cancel": "post /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
},
},
},
},
"models": {
"models": {
"model": "OpenAIModel",
"list_models_response": "OpenAIListModelsResponse",
},
"methods": {
"list": {"paginated": False, "endpoint": "get /v1/models"},
"retrieve": "get /v1/models/{model_id}",
"register": "post /v1/models",
"unregister": "delete /v1/models/{model_id}",
},
"subresources": {"openai": {"methods": {"list": {"paginated": False, "endpoint": "get /v1/models"}}}},
},
"providers": {
"models": {"list_providers_response": "ListProvidersResponse"},
"methods": {
"list": {"paginated": False, "endpoint": "get /v1/providers"},
"retrieve": "get /v1/providers/{provider_id}",
},
},
"routes": {
"models": {"list_routes_response": "ListRoutesResponse"},
"methods": {"list": {"paginated": False, "endpoint": "get /v1/inspect/routes"}},
},
"moderations": {
"models": {"create_response": "ModerationObject"},
"methods": {"create": "post /v1/moderations"},
},
"safety": {
"models": {"run_shield_response": "RunShieldResponse"},
"methods": {"run_shield": "post /v1/safety/run-shield"},
},
"shields": {
"models": {"shield": "Shield", "list_shields_response": "ListShieldsResponse"},
"methods": {
"retrieve": "get /v1/shields/{identifier}",
"list": {"paginated": False, "endpoint": "get /v1/shields"},
"register": "post /v1/shields",
"delete": "delete /v1/shields/{identifier}",
},
},
"scoring": {
"methods": {
"score": "post /v1/scoring/score",
"score_batch": "post /v1/scoring/score-batch",
}
},
"scoring_functions": {
"models": {
"scoring_fn": "ScoringFn",
"scoring_fn_params": "ScoringFnParams",
"list_scoring_functions_response": "ListScoringFunctionsResponse",
},
"methods": {
"retrieve": "get /v1/scoring-functions/{scoring_fn_id}",
"list": {"paginated": False, "endpoint": "get /v1/scoring-functions"},
"register": "post /v1/scoring-functions",
"unregister": "delete /v1/scoring-functions/{scoring_fn_id}",
},
},
"files": {
"models": {
"file": "OpenAIFileObject",
"list_files_response": "ListOpenAIFileResponse",
"delete_file_response": "OpenAIFileDeleteResponse",
},
"methods": {
"create": "post /v1/files",
"list": "get /v1/files",
"retrieve": "get /v1/files/{file_id}",
"delete": "delete /v1/files/{file_id}",
"content": "get /v1/files/{file_id}/content",
},
},
"batches": {
"methods": {
"create": "post /v1/batches",
"list": "get /v1/batches",
"retrieve": "get /v1/batches/{batch_id}",
"cancel": "post /v1/batches/{batch_id}/cancel",
}
},
"alpha": {
"subresources": {
"inference": {"methods": {"rerank": "post /v1alpha/inference/rerank"}},
"post_training": {
"models": {
"algorithm_config": "AlgorithmConfig",
"post_training_job": "PostTrainingJob",
"list_post_training_jobs_response": "ListPostTrainingJobsResponse",
},
"methods": {
"preference_optimize": "post /v1alpha/post-training/preference-optimize",
"supervised_fine_tune": "post /v1alpha/post-training/supervised-fine-tune",
},
"subresources": {
"job": {
"methods": {
"artifacts": "get /v1alpha/post-training/job/artifacts",
"cancel": "post /v1alpha/post-training/job/cancel",
"status": "get /v1alpha/post-training/job/status",
"list": {
"paginated": False,
"endpoint": "get /v1alpha/post-training/jobs",
},
}
}
},
},
"benchmarks": {
"models": {
"benchmark": "Benchmark",
"list_benchmarks_response": "ListBenchmarksResponse",
},
"methods": {
"retrieve": "get /v1alpha/eval/benchmarks/{benchmark_id}",
"list": {
"paginated": False,
"endpoint": "get /v1alpha/eval/benchmarks",
},
"register": "post /v1alpha/eval/benchmarks",
"unregister": "delete /v1alpha/eval/benchmarks/{benchmark_id}",
},
},
"eval": {
"models": {
"evaluate_response": "EvaluateResponse",
"benchmark_config": "BenchmarkConfig",
"job": "Job",
},
"methods": {
"evaluate_rows": "post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations",
"run_eval": "post /v1alpha/eval/benchmarks/{benchmark_id}/jobs",
"evaluate_rows_alpha": "post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations",
"run_eval_alpha": "post /v1alpha/eval/benchmarks/{benchmark_id}/jobs",
},
"subresources": {
"jobs": {
"methods": {
"cancel": "delete /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}",
"status": "get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}",
"retrieve": "get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result",
}
}
},
},
}
},
"beta": {
"subresources": {
"datasets": {
"models": {"list_datasets_response": "ListDatasetsResponse"},
"methods": {
"register": "post /v1beta/datasets",
"retrieve": "get /v1beta/datasets/{dataset_id}",
"list": {"paginated": False, "endpoint": "get /v1beta/datasets"},
"unregister": "delete /v1beta/datasets/{dataset_id}",
"iterrows": "get /v1beta/datasetio/iterrows/{dataset_id}",
"appendrows": "post /v1beta/datasetio/append-rows/{dataset_id}",
},
}
}
},
}
HTTP_METHODS = {"get", "post", "put", "patch", "delete", "options", "head"}
@dataclass
class Endpoint:
method: str
path: str
extra: dict[str, Any] = field(default_factory=dict)
@classmethod
def from_config(cls, value: Any) -> Endpoint:
if isinstance(value, str):
method, _, path = value.partition(" ")
return cls._from_parts(method, path)
if isinstance(value, dict) and "endpoint" in value:
method, _, path = value["endpoint"].partition(" ")
extra = {k: v for k, v in value.items() if k != "endpoint"}
endpoint = cls._from_parts(method, path)
endpoint.extra.update(extra)
return endpoint
raise ValueError(f"Unsupported endpoint value: {value!r}")
@classmethod
def _from_parts(cls, method: str, path: str) -> Endpoint:
method = method.strip().lower()
path = path.strip()
if method not in HTTP_METHODS:
raise ValueError(f"Unsupported HTTP method for Stainless config: {method!r}")
if not path.startswith("/"):
raise ValueError(f"Endpoint path must start with '/': {path!r}")
return cls(method=method, path=path)
def to_config(self) -> Any:
if not self.extra:
return f"{self.method} {self.path}"
data = dict(self.extra)
data["endpoint"] = f"{self.method} {self.path}"
return data
def route_key(self) -> str:
return f"{self.method} {self.path}"
@dataclass
class Resource:
models: dict[str, str] | None = None
methods: dict[str, Endpoint] = field(default_factory=dict)
subresources: dict[str, Resource] = field(default_factory=dict)
@classmethod
def from_dict(cls, data: dict[str, Any]) -> Resource:
models = data.get("models")
methods = {name: Endpoint.from_config(value) for name, value in data.get("methods", {}).items()}
subresources = {name: cls.from_dict(value) for name, value in data.get("subresources", {}).items()}
return cls(models=models, methods=methods, subresources=subresources)
def to_config(self) -> dict[str, Any]:
result: dict[str, Any] = {}
if self.models:
result["models"] = self.models
if self.methods:
result["methods"] = {name: endpoint.to_config() for name, endpoint in self.methods.items()}
if self.subresources:
result["subresources"] = {name: resource.to_config() for name, resource in self.subresources.items()}
return result
def collect_endpoint_paths(self) -> set[str]:
paths = {endpoint.route_key() for endpoint in self.methods.values()}
for subresource in self.subresources.values():
paths.update(subresource.collect_endpoint_paths())
return paths
def iter_endpoints(self, prefix: str) -> Iterator[tuple[str, str]]:
for method_name, endpoint in self.methods.items():
label = f"{prefix}.{method_name}" if prefix else method_name
yield endpoint.route_key(), label
for sub_name, subresource in self.subresources.items():
sub_prefix = f"{prefix}.{sub_name}" if prefix else sub_name
yield from subresource.iter_endpoints(sub_prefix)
_RESOURCES = {name: Resource.from_dict(data) for name, data in ALL_RESOURCES.items()}
def _load_openapi_paths(openapi_path: Path) -> set[str]:
spec = yaml.safe_load(openapi_path.read_text()) or {}
paths: set[str] = set()
for path, path_item in (spec.get("paths") or {}).items():
if not isinstance(path_item, dict):
continue
for method, operation in path_item.items():
if not isinstance(operation, dict):
continue
paths.add(f"{str(method).lower()} {path}")
return paths
@dataclass(frozen=True)
class StainlessConfig:
organization: dict[str, Any]
security: list[Any]
security_schemes: dict[str, Any]
targets: dict[str, Any]
client_settings: dict[str, Any]
environments: dict[str, Any]
pagination: list[dict[str, Any]]
settings: dict[str, Any]
openapi: dict[str, Any]
readme: dict[str, Any]
resources: dict[str, Resource]
@classmethod
def make(cls) -> StainlessConfig:
return cls(
organization=ORGANIZATION,
security=SECURITY,
security_schemes=SECURITY_SCHEMES,
targets=TARGETS,
client_settings=CLIENT_SETTINGS,
environments=ENVIRONMENTS,
pagination=PAGINATION,
settings=SETTINGS,
openapi=OPENAPI,
readme=README,
resources=dict(_RESOURCES),
)
def referenced_paths(self) -> set[str]:
paths: set[str] = set()
for resource in self.resources.values():
paths.update(resource.collect_endpoint_paths())
paths.update(self.readme_endpoint_paths())
return paths
def readme_endpoint_paths(self) -> set[str]:
example_requests = self.readme.get("example_requests", {}) if self.readme else {}
paths: set[str] = set()
for entry in example_requests.values():
endpoint = entry.get("endpoint") if isinstance(entry, dict) else None
if isinstance(endpoint, str):
method, _, route = endpoint.partition(" ")
method = method.strip().lower()
route = route.strip()
if method and route:
paths.add(f"{method} {route}")
return paths
def endpoint_map(self) -> dict[str, list[str]]:
mapping: dict[str, list[str]] = {}
for resource_name, resource in self.resources.items():
for route, label in resource.iter_endpoints(resource_name):
mapping.setdefault(route, []).append(label)
return mapping
def validate_unique_endpoints(self) -> None:
duplicates: dict[str, list[str]] = {}
for route, labels in self.endpoint_map().items():
top_levels = {label.split(".", 1)[0] for label in labels}
if len(top_levels) > 1:
duplicates[route] = labels
if duplicates:
formatted = "\n".join(
f" - {route} defined in: {', '.join(sorted(labels))}" for route, labels in sorted(duplicates.items())
)
raise ValueError("Duplicate endpoints found across resources:\n" + formatted)
def validate_readme_endpoints(self) -> None:
resource_paths: set[str] = set()
for resource in self.resources.values():
resource_paths.update(resource.collect_endpoint_paths())
missing = sorted(path for path in self.readme_endpoint_paths() if path not in resource_paths)
if missing:
formatted = "\n".join(f" - {path}" for path in missing)
raise ValueError("README example endpoints are not present in Stainless resources:\n" + formatted)
def to_dict(self) -> dict[str, Any]:
cfg: dict[str, Any] = {}
for section in SECTION_ORDER:
if section == "resources":
cfg[section] = {name: resource.to_config() for name, resource in self.resources.items()}
continue
cfg[section] = getattr(self, section)
return cfg
def validate_against_openapi(self, openapi_path: Path) -> None:
if not openapi_path.exists():
raise FileNotFoundError(f"OpenAPI spec not found at {openapi_path}")
spec_paths = _load_openapi_paths(openapi_path)
config_paths = self.referenced_paths()
missing = sorted(path for path in config_paths if path not in spec_paths)
if missing:
formatted = "\n".join(f" - {path}" for path in missing)
raise ValueError("Stainless config references missing endpoints:\n" + formatted)
def validate(self, openapi_path: Path | None = None) -> None:
self.validate_unique_endpoints()
self.validate_readme_endpoints()
if openapi_path is not None:
self.validate_against_openapi(openapi_path)
def build_config() -> dict[str, Any]:
return StainlessConfig.make().to_dict()
def write_config(repo_root: Path, openapi_path: Path | None = None) -> Path:
stainless_config = StainlessConfig.make()
spec_path = (openapi_path or (repo_root / "client-sdks" / "stainless" / "openapi.yml")).resolve()
stainless_config.validate(spec_path)
yaml_text = yaml.safe_dump(stainless_config.to_dict(), sort_keys=False)
output = repo_root / "client-sdks" / "stainless" / "config.yml"
output.write_text(HEADER + yaml_text)
return output
def main() -> None:
repo_root = Path(__file__).resolve().parents[3]
output = write_config(repo_root)
print(f"Wrote Stainless config: {output}")
if __name__ == "__main__":
main()

View file

@ -8,7 +8,8 @@
import subprocess
import sys
from pathlib import Path
from typing import Any
from types import UnionType
from typing import Annotated, Any, Union, get_args, get_origin
from pydantic_core import PydanticUndefined
from rich.progress import Progress, SpinnerColumn, TextColumn
@ -51,6 +52,41 @@ class ChangedPathTracker:
return self._changed_paths
def extract_type_annotation(annotation: Any) -> str:
"""extract a type annotation into a clean string representation."""
if annotation is None:
return "Any"
if annotation is type(None):
return "None"
origin = get_origin(annotation)
args = get_args(annotation)
# recursive workaround for Annotated types to ignore FieldInfo part
if origin is Annotated and args:
return extract_type_annotation(args[0])
if origin in [Union, UnionType]:
non_none_args = [arg for arg in args if arg is not type(None)]
has_none = len(non_none_args) < len(args)
if len(non_none_args) == 1:
formatted = extract_type_annotation(non_none_args[0])
return f"{formatted} | None" if has_none else formatted
else:
formatted_args = [extract_type_annotation(arg) for arg in non_none_args]
result = " | ".join(formatted_args)
return f"{result} | None" if has_none else result
if origin is not None and args:
origin_name = getattr(origin, "__name__", str(origin))
formatted_args = [extract_type_annotation(arg) for arg in args]
return f"{origin_name}[{', '.join(formatted_args)}]"
return annotation.__name__ if hasattr(annotation, "__name__") else str(annotation)
def get_config_class_info(config_class_path: str) -> dict[str, Any]:
"""Extract configuration information from a config class."""
try:
@ -78,14 +114,8 @@ def get_config_class_info(config_class_path: str) -> dict[str, Any]:
for field_name, field in config_class.model_fields.items():
if getattr(field, "exclude", False):
continue
field_type = str(field.annotation) if field.annotation else "Any"
# this string replace is ridiculous
field_type = field_type.replace("typing.", "").replace("Optional[", "").replace("]", "")
field_type = field_type.replace("Annotated[", "").replace("FieldInfo(", "").replace(")", "")
field_type = field_type.replace("llama_stack_api.inference.", "")
field_type = field_type.replace("llama_stack.providers.", "")
field_type = field_type.replace("llama_stack_api.datatypes.", "")
field_type = extract_type_annotation(field.annotation)
default_value = field.default
if field.default_factory is not None:
@ -345,6 +375,14 @@ def generate_index_docs(api_name: str, api_docstring: str | None, provider_entri
# Add YAML frontmatter for index
md_lines.append("---")
if api_docstring:
# Handle multi-line descriptions in YAML
if "\n" in api_docstring.strip():
md_lines.append("description: |")
for line in api_docstring.strip().split("\n"):
# Avoid trailing whitespace by only adding spaces to non-empty lines
md_lines.append(f" {line}" if line.strip() else "")
else:
# For single line descriptions, format properly for YAML
clean_desc = api_docstring.strip().replace('"', '\\"')
md_lines.append(f'description: "{clean_desc}"')
md_lines.append(f"sidebar_label: {sidebar_label}")

View file

@ -17,3 +17,5 @@ PYTHONPATH=$PYTHONPATH:$stack_dir \
python3 -m scripts.openapi_generator "$stack_dir"/docs/static
cp "$stack_dir"/docs/static/stainless-llama-stack-spec.yaml "$stack_dir"/client-sdks/stainless/openapi.yml
PYTHONPATH=$PYTHONPATH:$stack_dir \
python3 -m scripts.openapi_generator.stainless_config.generate_config

View file

@ -48,16 +48,10 @@ class ModelContextProtocolToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime
if mcp_endpoint is None:
raise ValueError("mcp_endpoint is required")
# Phase 1: Support both old header-based auth AND new authorization parameter
# Get headers and auth from provider data (old approach)
provider_headers, provider_auth = await self.get_headers_from_request(mcp_endpoint.uri)
# Get other headers from provider data (but NOT authorization)
provider_headers = await self.get_headers_from_request(mcp_endpoint.uri)
# New authorization parameter takes precedence over provider data
final_authorization = authorization or provider_auth
return await list_mcp_tools(
endpoint=mcp_endpoint.uri, headers=provider_headers, authorization=final_authorization
)
return await list_mcp_tools(endpoint=mcp_endpoint.uri, headers=provider_headers, authorization=authorization)
async def invoke_tool(
self, tool_name: str, kwargs: dict[str, Any], authorization: str | None = None
@ -69,39 +63,38 @@ class ModelContextProtocolToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime
if urlparse(endpoint).scheme not in ("http", "https"):
raise ValueError(f"Endpoint {endpoint} is not a valid HTTP(S) URL")
# Phase 1: Support both old header-based auth AND new authorization parameter
# Get headers and auth from provider data (old approach)
provider_headers, provider_auth = await self.get_headers_from_request(endpoint)
# New authorization parameter takes precedence over provider data
final_authorization = authorization or provider_auth
# Get other headers from provider data (but NOT authorization)
provider_headers = await self.get_headers_from_request(endpoint)
return await invoke_mcp_tool(
endpoint=endpoint,
tool_name=tool_name,
kwargs=kwargs,
headers=provider_headers,
authorization=final_authorization,
authorization=authorization,
)
async def get_headers_from_request(self, mcp_endpoint_uri: str) -> tuple[dict[str, str], str | None]:
async def get_headers_from_request(self, mcp_endpoint_uri: str) -> dict[str, str]:
"""
Extract headers and authorization from request provider data (Phase 1 backward compatibility).
Extract headers from request provider data, excluding authorization.
Phase 1: Temporarily allows Authorization to be passed via mcp_headers for backward compatibility.
Phase 2: Will enforce that Authorization should use the dedicated authorization parameter instead.
Authorization must be provided via the dedicated authorization parameter.
If Authorization is found in mcp_headers, raise an error to guide users to the correct approach.
Args:
mcp_endpoint_uri: The MCP endpoint URI to match against provider data
Returns:
Tuple of (headers_dict, authorization_token)
- headers_dict: All headers except Authorization
- authorization_token: Token from Authorization header (with "Bearer " prefix removed), or None
dict[str, str]: Headers dictionary (without Authorization)
Raises:
ValueError: If Authorization header is found in mcp_headers
"""
def canonicalize_uri(uri: str) -> str:
return f"{urlparse(uri).netloc or ''}/{urlparse(uri).path or ''}"
headers = {}
authorization = None
provider_data = self.get_request_provider_data()
if provider_data and hasattr(provider_data, "mcp_headers") and provider_data.mcp_headers:
@ -109,17 +102,14 @@ class ModelContextProtocolToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime
if canonicalize_uri(uri) != canonicalize_uri(mcp_endpoint_uri):
continue
# Phase 1: Extract Authorization from mcp_headers for backward compatibility
# (Phase 2 will reject this and require the dedicated authorization parameter)
# Reject Authorization in mcp_headers - must use authorization parameter
for key in values.keys():
if key.lower() == "authorization":
# Extract authorization token and strip "Bearer " prefix if present
auth_value = values[key]
if auth_value.startswith("Bearer "):
authorization = auth_value[7:] # Remove "Bearer " prefix
else:
authorization = auth_value
else:
raise ValueError(
"Authorization cannot be provided via mcp_headers in provider_data. "
"Please use the dedicated 'authorization' parameter instead. "
"Example: tool_runtime.invoke_tool(..., authorization='your-token')"
)
headers[key] = values[key]
return headers, authorization
return headers

View file

@ -22,7 +22,7 @@ and considered a code smell. All exported symbols are explicitly listed in __all
__version__ = "0.4.0.dev0"
# Import submodules for those who need them
from . import common, strong_typing # noqa: F401
from . import common # noqa: F401
# Import all public API symbols
from .agents import Agents, ResponseGuardrail, ResponseGuardrailSpec
@ -393,8 +393,6 @@ from .shields import (
ShieldInput,
Shields,
)
# Import from strong_typing
from .tools import (
ListToolDefsResponse,
ListToolGroupsResponse,
@ -449,7 +447,6 @@ from .version import (
__all__ = [
# Submodules
"common",
"strong_typing",
# Version constants
"LLAMA_STACK_API_V1",
"LLAMA_STACK_API_V1ALPHA",

View file

@ -9,8 +9,6 @@ Integration tests for inference/chat completion with JSON Schema-based tools.
Tests that tools pass through correctly to various LLM providers.
"""
import json
import pytest
from llama_stack.core.library_client import LlamaStackAsLibraryClient
@ -193,22 +191,11 @@ class TestMCPToolsInChatCompletion:
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Use the dedicated authorization parameter
# Get the tools from MCP
tools_response = llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
# Convert to OpenAI format for inference

View file

@ -4,8 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pytest
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.turn_events import StepCompleted, StepProgress, ToolCallIssuedDelta
@ -37,32 +35,20 @@ def test_mcp_invocation(llama_stack_client, text_model_id, mcp_server):
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
with pytest.raises(Exception, match="Unauthorized"):
llama_stack_client.tools.list(toolgroup_id=test_toolgroup_id)
tools_list = llama_stack_client.tools.list(
toolgroup_id=test_toolgroup_id,
extra_headers=auth_headers, # Use old header-based approach
# Use the dedicated authorization parameter (no more provider_data headers)
# This tests direct tool_runtime.invoke_tool API calls
tools_list = llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
authorization=AUTH_TOKEN, # Use dedicated authorization parameter
)
assert len(tools_list) == 2
assert {t.name for t in tools_list} == {"greet_everyone", "get_boiling_point"}
# Invoke tool with authorization parameter
response = llama_stack_client.tool_runtime.invoke_tool(
tool_name="greet_everyone",
kwargs=dict(url="https://www.google.com"),
extra_headers=auth_headers, # Use old header-based approach
authorization=AUTH_TOKEN, # Use dedicated authorization parameter
)
content = response.content
assert len(content) == 1

View file

@ -8,8 +8,6 @@
Tests $ref, $defs, and other JSON Schema features through MCP integration.
"""
import json
import pytest
from llama_stack.core.library_client import LlamaStackAsLibraryClient
@ -122,22 +120,11 @@ class TestMCPSchemaPreservation:
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Use the dedicated authorization parameter
# List runtime tools
response = llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
tools = response
@ -173,22 +160,11 @@ class TestMCPSchemaPreservation:
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Use the dedicated authorization parameter
# List tools
response = llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
# Find book_flight tool (which should have $ref/$defs)
@ -230,21 +206,10 @@ class TestMCPSchemaPreservation:
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Use the dedicated authorization parameter
response = llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
# Find get_weather tool
@ -284,22 +249,10 @@ class TestMCPToolInvocation:
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# List tools to populate the tool index
# Use the dedicated authorization parameter
llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
# Invoke tool with complex nested data
@ -311,7 +264,7 @@ class TestMCPToolInvocation:
"shipping": {"address": {"street": "123 Main St", "city": "San Francisco", "zipcode": "94102"}},
}
},
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
# Should succeed without schema validation errors
@ -337,29 +290,17 @@ class TestMCPToolInvocation:
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# List tools to populate the tool index
# Use the dedicated authorization parameter
llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
# Test with email format
result_email = llama_stack_client.tool_runtime.invoke_tool(
tool_name="flexible_contact",
kwargs={"contact_info": "user@example.com"},
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
assert result_email.error_message is None
@ -368,7 +309,7 @@ class TestMCPToolInvocation:
result_phone = llama_stack_client.tool_runtime.invoke_tool(
tool_name="flexible_contact",
kwargs={"contact_info": "+15551234567"},
extra_headers=auth_headers,
authorization=AUTH_TOKEN,
)
assert result_phone.error_message is None
@ -400,21 +341,10 @@ class TestAgentWithMCPTools:
mcp_endpoint=dict(uri=uri),
)
# Use old header-based approach for Phase 1 (backward compatibility)
provider_data = {
"mcp_headers": {
uri: {
"Authorization": f"Bearer {AUTH_TOKEN}",
},
},
}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
tools_list = llama_stack_client.tools.list(
toolgroup_id=test_toolgroup_id,
extra_headers=auth_headers,
# Use the dedicated authorization parameter
tools_list = llama_stack_client.tool_runtime.list_tools(
tool_group_id=test_toolgroup_id,
authorization=AUTH_TOKEN,
)
tool_defs = [
{

4
uv.lock generated
View file

@ -2165,10 +2165,8 @@ requires-dist = [
{ name = "python-dotenv" },
{ name = "python-multipart", specifier = ">=0.0.20" },
{ name = "pyyaml", specifier = ">=6.0" },
{ name = "pyyaml", specifier = ">=6.0.2" },
{ name = "rich" },
{ name = "sqlalchemy", extras = ["asyncio"], specifier = ">=2.0.41" },
{ name = "starlette" },
{ name = "starlette", specifier = ">=0.49.1" },
{ name = "termcolor" },
{ name = "tiktoken" },
@ -4656,6 +4654,8 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/6b/fa/3234f913fe9a6525a7b97c6dad1f51e72b917e6872e051a5e2ffd8b16fbb/ruamel.yaml.clib-0.2.14-cp314-cp314-macosx_15_0_arm64.whl", hash = "sha256:70eda7703b8126f5e52fcf276e6c0f40b0d314674f896fc58c47b0aef2b9ae83", size = 137970, upload-time = "2025-09-22T19:51:09.472Z" },
{ url = "https://files.pythonhosted.org/packages/ef/ec/4edbf17ac2c87fa0845dd366ef8d5852b96eb58fcd65fc1ecf5fe27b4641/ruamel.yaml.clib-0.2.14-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:a0cb71ccc6ef9ce36eecb6272c81afdc2f565950cdcec33ae8e6cd8f7fc86f27", size = 739639, upload-time = "2025-09-22T19:51:10.566Z" },
{ url = "https://files.pythonhosted.org/packages/15/18/b0e1fafe59051de9e79cdd431863b03593ecfa8341c110affad7c8121efc/ruamel.yaml.clib-0.2.14-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:e7cb9ad1d525d40f7d87b6df7c0ff916a66bc52cb61b66ac1b2a16d0c1b07640", size = 764456, upload-time = "2025-09-22T19:51:11.736Z" },
{ url = "https://files.pythonhosted.org/packages/e7/cd/150fdb96b8fab27fe08d8a59fe67554568727981806e6bc2677a16081ec7/ruamel_yaml_clib-0.2.14-cp314-cp314-win32.whl", hash = "sha256:9b4104bf43ca0cd4e6f738cb86326a3b2f6eef00f417bd1e7efb7bdffe74c539", size = 102394, upload-time = "2025-11-14T21:57:36.703Z" },
{ url = "https://files.pythonhosted.org/packages/bd/e6/a3fa40084558c7e1dc9546385f22a93949c890a8b2e445b2ba43935f51da/ruamel_yaml_clib-0.2.14-cp314-cp314-win_amd64.whl", hash = "sha256:13997d7d354a9890ea1ec5937a219817464e5cc344805b37671562a401ca3008", size = 122673, upload-time = "2025-11-14T21:57:38.177Z" },
]
[[package]]