mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-25 13:49:51 +00:00
Merge branch 'main' into nvidia-e2e-notebook
This commit is contained in:
commit
1a492ad0cc
200 changed files with 8714 additions and 3175 deletions
|
@ -6,12 +6,12 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.distribution.datatypes import AccessRule, Api
|
||||
|
||||
from .config import MetaReferenceAgentsImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: dict[Api, Any]):
|
||||
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: dict[Api, Any], policy: list[AccessRule]):
|
||||
from .agents import MetaReferenceAgentsImpl
|
||||
|
||||
impl = MetaReferenceAgentsImpl(
|
||||
|
@ -21,6 +21,7 @@ async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: dict[Ap
|
|||
deps[Api.safety],
|
||||
deps[Api.tool_runtime],
|
||||
deps[Api.tool_groups],
|
||||
policy,
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -60,6 +60,7 @@ from llama_stack.apis.inference import (
|
|||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.distribution.datatypes import AccessRule
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
|
@ -96,13 +97,14 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
vector_io_api: VectorIO,
|
||||
persistence_store: KVStore,
|
||||
created_at: str,
|
||||
policy: list[AccessRule],
|
||||
):
|
||||
self.agent_id = agent_id
|
||||
self.agent_config = agent_config
|
||||
self.inference_api = inference_api
|
||||
self.safety_api = safety_api
|
||||
self.vector_io_api = vector_io_api
|
||||
self.storage = AgentPersistence(agent_id, persistence_store)
|
||||
self.storage = AgentPersistence(agent_id, persistence_store, policy)
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
self.created_at = created_at
|
||||
|
|
|
@ -29,6 +29,7 @@ from llama_stack.apis.agents import (
|
|||
Session,
|
||||
Turn,
|
||||
)
|
||||
from llama_stack.apis.agents.openai_responses import OpenAIResponseText
|
||||
from llama_stack.apis.common.responses import PaginatedResponse
|
||||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
|
@ -40,6 +41,7 @@ from llama_stack.apis.inference import (
|
|||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.distribution.datatypes import AccessRule
|
||||
from llama_stack.providers.utils.kvstore import InmemoryKVStoreImpl, kvstore_impl
|
||||
from llama_stack.providers.utils.pagination import paginate_records
|
||||
from llama_stack.providers.utils.responses.responses_store import ResponsesStore
|
||||
|
@ -61,6 +63,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
safety_api: Safety,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
tool_groups_api: ToolGroups,
|
||||
policy: list[AccessRule],
|
||||
):
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
@ -71,6 +74,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
|
||||
self.in_memory_store = InmemoryKVStoreImpl()
|
||||
self.openai_responses_impl: OpenAIResponsesImpl | None = None
|
||||
self.policy = policy
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.persistence_store = await kvstore_impl(self.config.persistence_store)
|
||||
|
@ -129,6 +133,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
self.persistence_store if agent_info.enable_session_persistence else self.in_memory_store
|
||||
),
|
||||
created_at=agent_info.created_at,
|
||||
policy=self.policy,
|
||||
)
|
||||
|
||||
async def create_agent_session(
|
||||
|
@ -324,10 +329,12 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
) -> OpenAIResponseObject:
|
||||
return await self.openai_responses_impl.create_openai_response(
|
||||
input, model, instructions, previous_response_id, store, stream, temperature, tools
|
||||
input, model, instructions, previous_response_id, store, stream, temperature, text, tools, max_infer_iters
|
||||
)
|
||||
|
||||
async def list_openai_responses(
|
||||
|
|
|
@ -8,7 +8,7 @@ import json
|
|||
import time
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any, cast
|
||||
from typing import Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
from pydantic import BaseModel
|
||||
|
@ -37,6 +37,8 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseOutputMessageFunctionToolCall,
|
||||
OpenAIResponseOutputMessageMCPListTools,
|
||||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
OpenAIResponseText,
|
||||
OpenAIResponseTextFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
Inference,
|
||||
|
@ -50,7 +52,12 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChoice,
|
||||
OpenAIDeveloperMessageParam,
|
||||
OpenAIImageURL,
|
||||
OpenAIJSONSchema,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatJSONObject,
|
||||
OpenAIResponseFormatJSONSchema,
|
||||
OpenAIResponseFormatParam,
|
||||
OpenAIResponseFormatText,
|
||||
OpenAISystemMessageParam,
|
||||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
|
@ -158,6 +165,21 @@ async def _convert_chat_choice_to_response_message(choice: OpenAIChoice) -> Open
|
|||
)
|
||||
|
||||
|
||||
async def _convert_response_text_to_chat_response_format(text: OpenAIResponseText) -> OpenAIResponseFormatParam:
|
||||
"""
|
||||
Convert an OpenAI Response text parameter into an OpenAI Chat Completion response format.
|
||||
"""
|
||||
if not text.format or text.format["type"] == "text":
|
||||
return OpenAIResponseFormatText(type="text")
|
||||
if text.format["type"] == "json_object":
|
||||
return OpenAIResponseFormatJSONObject()
|
||||
if text.format["type"] == "json_schema":
|
||||
return OpenAIResponseFormatJSONSchema(
|
||||
json_schema=OpenAIJSONSchema(name=text.format["name"], schema=text.format["schema"])
|
||||
)
|
||||
raise ValueError(f"Unsupported text format: {text.format}")
|
||||
|
||||
|
||||
async def _get_message_type_by_role(role: str):
|
||||
role_to_type = {
|
||||
"user": OpenAIUserMessageParam,
|
||||
|
@ -178,8 +200,8 @@ class ChatCompletionContext(BaseModel):
|
|||
messages: list[OpenAIMessageParam]
|
||||
tools: list[ChatCompletionToolParam] | None = None
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP]
|
||||
stream: bool
|
||||
temperature: float | None
|
||||
response_format: OpenAIResponseFormatParam
|
||||
|
||||
|
||||
class OpenAIResponsesImpl:
|
||||
|
@ -258,37 +280,6 @@ class OpenAIResponsesImpl:
|
|||
"""
|
||||
return await self.responses_store.list_response_input_items(response_id, after, before, include, limit, order)
|
||||
|
||||
async def _process_response_choices(
|
||||
self,
|
||||
chat_response: OpenAIChatCompletion,
|
||||
ctx: ChatCompletionContext,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
) -> list[OpenAIResponseOutput]:
|
||||
"""Handle tool execution and response message creation."""
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
# Execute tool calls if any
|
||||
for choice in chat_response.choices:
|
||||
if choice.message.tool_calls and tools:
|
||||
# Assume if the first tool is a function, all tools are functions
|
||||
if tools[0].type == "function":
|
||||
for tool_call in choice.message.tool_calls:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments=tool_call.function.arguments or "",
|
||||
call_id=tool_call.id,
|
||||
name=tool_call.function.name or "",
|
||||
id=f"fc_{uuid.uuid4()}",
|
||||
status="completed",
|
||||
)
|
||||
)
|
||||
else:
|
||||
tool_messages = await self._execute_tool_and_return_final_output(choice, ctx)
|
||||
output_messages.extend(tool_messages)
|
||||
else:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
|
||||
return output_messages
|
||||
|
||||
async def _store_response(
|
||||
self,
|
||||
response: OpenAIResponseObject,
|
||||
|
@ -331,10 +322,52 @@ class OpenAIResponsesImpl:
|
|||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
):
|
||||
stream = False if stream is None else stream
|
||||
stream = bool(stream)
|
||||
text = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")) if text is None else text
|
||||
|
||||
stream_gen = self._create_streaming_response(
|
||||
input=input,
|
||||
model=model,
|
||||
instructions=instructions,
|
||||
previous_response_id=previous_response_id,
|
||||
store=store,
|
||||
temperature=temperature,
|
||||
text=text,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return stream_gen
|
||||
else:
|
||||
response = None
|
||||
async for stream_chunk in stream_gen:
|
||||
if stream_chunk.type == "response.completed":
|
||||
if response is not None:
|
||||
raise ValueError("The response stream completed multiple times! Earlier response: {response}")
|
||||
response = stream_chunk.response
|
||||
# don't leave the generator half complete!
|
||||
|
||||
if response is None:
|
||||
raise ValueError("The response stream never completed")
|
||||
return response
|
||||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
|
||||
# Input preprocessing
|
||||
|
@ -342,7 +375,10 @@ class OpenAIResponsesImpl:
|
|||
messages = await _convert_response_input_to_chat_messages(input)
|
||||
await self._prepend_instructions(messages, instructions)
|
||||
|
||||
# Tool setup
|
||||
# Structured outputs
|
||||
response_format = await _convert_response_text_to_chat_response_format(text)
|
||||
|
||||
# Tool setup, TODO: refactor this slightly since this can also yield events
|
||||
chat_tools, mcp_tool_to_server, mcp_list_message = (
|
||||
await self._convert_response_tools_to_chat_tools(tools) if tools else (None, {}, None)
|
||||
)
|
||||
|
@ -354,89 +390,10 @@ class OpenAIResponsesImpl:
|
|||
messages=messages,
|
||||
tools=chat_tools,
|
||||
mcp_tool_to_server=mcp_tool_to_server,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
inference_result = await self.inference_api.openai_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=chat_tools,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._create_streaming_response(
|
||||
inference_result=inference_result,
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
tools=tools,
|
||||
)
|
||||
else:
|
||||
return await self._create_non_streaming_response(
|
||||
inference_result=inference_result,
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
async def _create_non_streaming_response(
|
||||
self,
|
||||
inference_result: Any,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
) -> OpenAIResponseObject:
|
||||
chat_response = OpenAIChatCompletion(**inference_result.model_dump())
|
||||
|
||||
# Process response choices (tool execution and message creation)
|
||||
output_messages.extend(
|
||||
await self._process_response_choices(
|
||||
chat_response=chat_response,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
)
|
||||
)
|
||||
|
||||
response = OpenAIResponseObject(
|
||||
created_at=chat_response.created,
|
||||
id=f"resp-{uuid.uuid4()}",
|
||||
model=model,
|
||||
object="response",
|
||||
status="completed",
|
||||
output=output_messages,
|
||||
)
|
||||
logger.debug(f"OpenAI Responses response: {response}")
|
||||
|
||||
# Store response if requested
|
||||
if store:
|
||||
await self._store_response(
|
||||
response=response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
inference_result: Any,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# Create initial response and emit response.created immediately
|
||||
response_id = f"resp-{uuid.uuid4()}"
|
||||
created_at = int(time.time())
|
||||
|
@ -448,87 +405,144 @@ class OpenAIResponsesImpl:
|
|||
object="response",
|
||||
status="in_progress",
|
||||
output=output_messages.copy(),
|
||||
text=text,
|
||||
)
|
||||
|
||||
# Emit response.created immediately
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
|
||||
|
||||
# For streaming, inference_result is an async iterator of chunks
|
||||
# Stream chunks and emit delta events as they arrive
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
sequence_number = 0
|
||||
n_iter = 0
|
||||
messages = ctx.messages.copy()
|
||||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
|
||||
async for chunk in inference_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=0,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks, using their index as the aggregation key
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
response_tool_call.function.arguments += tool_call.function.arguments
|
||||
else:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
chat_response_obj = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=chunk_finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
)
|
||||
|
||||
# Process response choices (tool execution and message creation)
|
||||
output_messages.extend(
|
||||
await self._process_response_choices(
|
||||
chat_response=chat_response_obj,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
while True:
|
||||
completion_result = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=messages,
|
||||
tools=ctx.tools,
|
||||
stream=True,
|
||||
temperature=ctx.temperature,
|
||||
response_format=ctx.response_format,
|
||||
)
|
||||
)
|
||||
|
||||
# Process streaming chunks and build complete response
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
sequence_number = 0
|
||||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
|
||||
async for chunk in completion_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=0,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
# Don't attempt to concatenate arguments if we don't have any new argumentsAdd commentMore actions
|
||||
if tool_call.function.arguments:
|
||||
# Guard against an initial None argument before we concatenate
|
||||
response_tool_call.function.arguments = (
|
||||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
else:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
current_response = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=chunk_finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
)
|
||||
|
||||
function_tool_calls = []
|
||||
non_function_tool_calls = []
|
||||
|
||||
next_turn_messages = messages.copy()
|
||||
for choice in current_response.choices:
|
||||
next_turn_messages.append(choice.message)
|
||||
|
||||
if choice.message.tool_calls and tools:
|
||||
for tool_call in choice.message.tool_calls:
|
||||
if _is_function_tool_call(tool_call, tools):
|
||||
function_tool_calls.append(tool_call)
|
||||
else:
|
||||
non_function_tool_calls.append(tool_call)
|
||||
else:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
|
||||
# execute non-function tool calls
|
||||
for tool_call in non_function_tool_calls:
|
||||
tool_call_log, tool_response_message = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
if tool_response_message:
|
||||
next_turn_messages.append(tool_response_message)
|
||||
|
||||
for tool_call in function_tool_calls:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments=tool_call.function.arguments or "",
|
||||
call_id=tool_call.id,
|
||||
name=tool_call.function.name or "",
|
||||
id=f"fc_{uuid.uuid4()}",
|
||||
status="completed",
|
||||
)
|
||||
)
|
||||
|
||||
if not function_tool_calls and not non_function_tool_calls:
|
||||
break
|
||||
|
||||
if function_tool_calls:
|
||||
logger.info("Exiting inference loop since there is a function (client-side) tool call")
|
||||
break
|
||||
|
||||
n_iter += 1
|
||||
if n_iter >= max_infer_iters:
|
||||
logger.info(f"Exiting inference loop since iteration count({n_iter}) exceeds {max_infer_iters=}")
|
||||
break
|
||||
|
||||
messages = next_turn_messages
|
||||
|
||||
# Create final response
|
||||
final_response = OpenAIResponseObject(
|
||||
|
@ -537,18 +551,19 @@ class OpenAIResponsesImpl:
|
|||
model=model,
|
||||
object="response",
|
||||
status="completed",
|
||||
text=text,
|
||||
output=output_messages,
|
||||
)
|
||||
|
||||
# Emit response.completed
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
|
||||
|
||||
if store:
|
||||
await self._store_response(
|
||||
response=final_response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
# Emit response.completed
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
|
||||
|
||||
async def _convert_response_tools_to_chat_tools(
|
||||
self, tools: list[OpenAIResponseInputTool]
|
||||
) -> tuple[
|
||||
|
@ -641,49 +656,6 @@ class OpenAIResponsesImpl:
|
|||
raise ValueError(f"Llama Stack OpenAI Responses does not yet support tool type: {input_tool.type}")
|
||||
return chat_tools, mcp_tool_to_server, mcp_list_message
|
||||
|
||||
async def _execute_tool_and_return_final_output(
|
||||
self,
|
||||
choice: OpenAIChoice,
|
||||
ctx: ChatCompletionContext,
|
||||
) -> list[OpenAIResponseOutput]:
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
|
||||
if not isinstance(choice.message, OpenAIAssistantMessageParam):
|
||||
return output_messages
|
||||
|
||||
if not choice.message.tool_calls:
|
||||
return output_messages
|
||||
|
||||
next_turn_messages = ctx.messages.copy()
|
||||
|
||||
# Add the assistant message with tool_calls response to the messages list
|
||||
next_turn_messages.append(choice.message)
|
||||
|
||||
for tool_call in choice.message.tool_calls:
|
||||
# TODO: telemetry spans for tool calls
|
||||
tool_call_log, further_input = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
if further_input:
|
||||
next_turn_messages.append(further_input)
|
||||
|
||||
tool_results_chat_response = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=next_turn_messages,
|
||||
stream=ctx.stream,
|
||||
temperature=ctx.temperature,
|
||||
)
|
||||
# type cast to appease mypy: this is needed because we don't handle streaming properly :)
|
||||
tool_results_chat_response = cast(OpenAIChatCompletion, tool_results_chat_response)
|
||||
|
||||
# Huge TODO: these are NOT the final outputs, we must keep the loop going
|
||||
tool_final_outputs = [
|
||||
await _convert_chat_choice_to_response_message(choice) for choice in tool_results_chat_response.choices
|
||||
]
|
||||
# TODO: Wire in annotations with URLs, titles, etc to these output messages
|
||||
output_messages.extend(tool_final_outputs)
|
||||
return output_messages
|
||||
|
||||
async def _execute_tool_call(
|
||||
self,
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
|
@ -767,5 +739,20 @@ class OpenAIResponsesImpl:
|
|||
else:
|
||||
raise ValueError(f"Unknown result content type: {type(result.content)}")
|
||||
input_message = OpenAIToolMessageParam(content=content, tool_call_id=tool_call_id)
|
||||
else:
|
||||
text = str(error_exc)
|
||||
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)
|
||||
|
||||
return message, input_message
|
||||
|
||||
|
||||
def _is_function_tool_call(
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
tools: list[OpenAIResponseInputTool],
|
||||
) -> bool:
|
||||
if not tool_call.function:
|
||||
return False
|
||||
for t in tools:
|
||||
if t.type == "function" and t.name == tool_call.function.name:
|
||||
return True
|
||||
return False
|
||||
|
|
|
@ -10,9 +10,10 @@ import uuid
|
|||
from datetime import datetime, timezone
|
||||
|
||||
from llama_stack.apis.agents import AgentConfig, Session, ToolExecutionStep, Turn
|
||||
from llama_stack.distribution.access_control import check_access
|
||||
from llama_stack.distribution.datatypes import AccessAttributes
|
||||
from llama_stack.distribution.request_headers import get_auth_attributes
|
||||
from llama_stack.distribution.access_control.access_control import AccessDeniedError, is_action_allowed
|
||||
from llama_stack.distribution.access_control.datatypes import AccessRule
|
||||
from llama_stack.distribution.datatypes import User
|
||||
from llama_stack.distribution.request_headers import get_authenticated_user
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
@ -22,7 +23,9 @@ class AgentSessionInfo(Session):
|
|||
# TODO: is this used anywhere?
|
||||
vector_db_id: str | None = None
|
||||
started_at: datetime
|
||||
access_attributes: AccessAttributes | None = None
|
||||
owner: User | None = None
|
||||
identifier: str | None = None
|
||||
type: str = "session"
|
||||
|
||||
|
||||
class AgentInfo(AgentConfig):
|
||||
|
@ -30,24 +33,27 @@ class AgentInfo(AgentConfig):
|
|||
|
||||
|
||||
class AgentPersistence:
|
||||
def __init__(self, agent_id: str, kvstore: KVStore):
|
||||
def __init__(self, agent_id: str, kvstore: KVStore, policy: list[AccessRule]):
|
||||
self.agent_id = agent_id
|
||||
self.kvstore = kvstore
|
||||
self.policy = policy
|
||||
|
||||
async def create_session(self, name: str) -> str:
|
||||
session_id = str(uuid.uuid4())
|
||||
|
||||
# Get current user's auth attributes for new sessions
|
||||
auth_attributes = get_auth_attributes()
|
||||
access_attributes = AccessAttributes(**auth_attributes) if auth_attributes else None
|
||||
user = get_authenticated_user()
|
||||
|
||||
session_info = AgentSessionInfo(
|
||||
session_id=session_id,
|
||||
session_name=name,
|
||||
started_at=datetime.now(timezone.utc),
|
||||
access_attributes=access_attributes,
|
||||
owner=user,
|
||||
turns=[],
|
||||
identifier=name, # should this be qualified in any way?
|
||||
)
|
||||
if not is_action_allowed(self.policy, "create", session_info, user):
|
||||
raise AccessDeniedError()
|
||||
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}",
|
||||
|
@ -73,10 +79,10 @@ class AgentPersistence:
|
|||
def _check_session_access(self, session_info: AgentSessionInfo) -> bool:
|
||||
"""Check if current user has access to the session."""
|
||||
# Handle backward compatibility for old sessions without access control
|
||||
if not hasattr(session_info, "access_attributes"):
|
||||
if not hasattr(session_info, "access_attributes") and not hasattr(session_info, "owner"):
|
||||
return True
|
||||
|
||||
return check_access(session_info.session_id, session_info.access_attributes, get_auth_attributes())
|
||||
return is_action_allowed(self.policy, "read", session_info, get_authenticated_user())
|
||||
|
||||
async def get_session_if_accessible(self, session_id: str) -> AgentSessionInfo | None:
|
||||
"""Get session info if the user has access to it. For internal use by sub-session methods."""
|
||||
|
|
20
llama_stack/providers/inline/files/localfs/__init__.py
Normal file
20
llama_stack/providers/inline/files/localfs/__init__.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import LocalfsFilesImplConfig
|
||||
from .files import LocalfsFilesImpl
|
||||
|
||||
__all__ = ["LocalfsFilesImpl", "LocalfsFilesImplConfig"]
|
||||
|
||||
|
||||
async def get_provider_impl(config: LocalfsFilesImplConfig, deps: dict[Api, Any]):
|
||||
impl = LocalfsFilesImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
31
llama_stack/providers/inline/files/localfs/config.py
Normal file
31
llama_stack/providers/inline/files/localfs/config.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
|
||||
|
||||
|
||||
class LocalfsFilesImplConfig(BaseModel):
|
||||
storage_dir: str = Field(
|
||||
description="Directory to store uploaded files",
|
||||
)
|
||||
metadata_store: SqlStoreConfig = Field(
|
||||
description="SQL store configuration for file metadata",
|
||||
)
|
||||
ttl_secs: int = 365 * 24 * 60 * 60 # 1 year
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"storage_dir": "${env.FILES_STORAGE_DIR:" + __distro_dir__ + "/files}",
|
||||
"metadata_store": SqliteSqlStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="files_metadata.db",
|
||||
),
|
||||
}
|
214
llama_stack/providers/inline/files/localfs/files.py
Normal file
214
llama_stack/providers/inline/files/localfs/files.py
Normal file
|
@ -0,0 +1,214 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Annotated
|
||||
|
||||
from fastapi import File, Form, Response, UploadFile
|
||||
|
||||
from llama_stack.apis.common.responses import Order
|
||||
from llama_stack.apis.files import (
|
||||
Files,
|
||||
ListOpenAIFileResponse,
|
||||
OpenAIFileDeleteResponse,
|
||||
OpenAIFileObject,
|
||||
OpenAIFilePurpose,
|
||||
)
|
||||
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStore, sqlstore_impl
|
||||
|
||||
from .config import LocalfsFilesImplConfig
|
||||
|
||||
|
||||
class LocalfsFilesImpl(Files):
|
||||
def __init__(self, config: LocalfsFilesImplConfig) -> None:
|
||||
self.config = config
|
||||
self.sql_store: SqlStore | None = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""Initialize the files provider by setting up storage directory and metadata database."""
|
||||
# Create storage directory if it doesn't exist
|
||||
storage_path = Path(self.config.storage_dir)
|
||||
storage_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Initialize SQL store for metadata
|
||||
self.sql_store = sqlstore_impl(self.config.metadata_store)
|
||||
await self.sql_store.create_table(
|
||||
"openai_files",
|
||||
{
|
||||
"id": ColumnDefinition(type=ColumnType.STRING, primary_key=True),
|
||||
"filename": ColumnType.STRING,
|
||||
"purpose": ColumnType.STRING,
|
||||
"bytes": ColumnType.INTEGER,
|
||||
"created_at": ColumnType.INTEGER,
|
||||
"expires_at": ColumnType.INTEGER,
|
||||
"file_path": ColumnType.STRING, # Path to actual file on disk
|
||||
},
|
||||
)
|
||||
|
||||
def _generate_file_id(self) -> str:
|
||||
"""Generate a unique file ID for OpenAI API."""
|
||||
return f"file-{uuid.uuid4().hex}"
|
||||
|
||||
def _get_file_path(self, file_id: str) -> Path:
|
||||
"""Get the filesystem path for a file ID."""
|
||||
return Path(self.config.storage_dir) / file_id
|
||||
|
||||
# OpenAI Files API Implementation
|
||||
async def openai_upload_file(
|
||||
self,
|
||||
file: Annotated[UploadFile, File()],
|
||||
purpose: Annotated[OpenAIFilePurpose, Form()],
|
||||
) -> OpenAIFileObject:
|
||||
"""Upload a file that can be used across various endpoints."""
|
||||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
file_id = self._generate_file_id()
|
||||
file_path = self._get_file_path(file_id)
|
||||
|
||||
content = await file.read()
|
||||
file_size = len(content)
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(content)
|
||||
|
||||
created_at = int(time.time())
|
||||
expires_at = created_at + self.config.ttl_secs
|
||||
|
||||
await self.sql_store.insert(
|
||||
"openai_files",
|
||||
{
|
||||
"id": file_id,
|
||||
"filename": file.filename or "uploaded_file",
|
||||
"purpose": purpose.value,
|
||||
"bytes": file_size,
|
||||
"created_at": created_at,
|
||||
"expires_at": expires_at,
|
||||
"file_path": file_path.as_posix(),
|
||||
},
|
||||
)
|
||||
|
||||
return OpenAIFileObject(
|
||||
id=file_id,
|
||||
filename=file.filename or "uploaded_file",
|
||||
purpose=purpose,
|
||||
bytes=file_size,
|
||||
created_at=created_at,
|
||||
expires_at=expires_at,
|
||||
)
|
||||
|
||||
async def openai_list_files(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int | None = 10000,
|
||||
order: Order | None = Order.desc,
|
||||
purpose: OpenAIFilePurpose | None = None,
|
||||
) -> ListOpenAIFileResponse:
|
||||
"""Returns a list of files that belong to the user's organization."""
|
||||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
# TODO: Implement 'after' pagination properly
|
||||
if after:
|
||||
raise NotImplementedError("After pagination not yet implemented")
|
||||
|
||||
where = None
|
||||
if purpose:
|
||||
where = {"purpose": purpose.value}
|
||||
|
||||
rows = await self.sql_store.fetch_all(
|
||||
"openai_files",
|
||||
where=where,
|
||||
order_by=[("created_at", order.value if order else Order.desc.value)],
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
files = [
|
||||
OpenAIFileObject(
|
||||
id=row["id"],
|
||||
filename=row["filename"],
|
||||
purpose=OpenAIFilePurpose(row["purpose"]),
|
||||
bytes=row["bytes"],
|
||||
created_at=row["created_at"],
|
||||
expires_at=row["expires_at"],
|
||||
)
|
||||
for row in rows
|
||||
]
|
||||
|
||||
return ListOpenAIFileResponse(
|
||||
data=files,
|
||||
has_more=False, # TODO: Implement proper pagination
|
||||
first_id=files[0].id if files else "",
|
||||
last_id=files[-1].id if files else "",
|
||||
)
|
||||
|
||||
async def openai_retrieve_file(self, file_id: str) -> OpenAIFileObject:
|
||||
"""Returns information about a specific file."""
|
||||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ValueError(f"File with id {file_id} not found")
|
||||
|
||||
return OpenAIFileObject(
|
||||
id=row["id"],
|
||||
filename=row["filename"],
|
||||
purpose=OpenAIFilePurpose(row["purpose"]),
|
||||
bytes=row["bytes"],
|
||||
created_at=row["created_at"],
|
||||
expires_at=row["expires_at"],
|
||||
)
|
||||
|
||||
async def openai_delete_file(self, file_id: str) -> OpenAIFileDeleteResponse:
|
||||
"""Delete a file."""
|
||||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ValueError(f"File with id {file_id} not found")
|
||||
|
||||
# Delete physical file
|
||||
file_path = Path(row["file_path"])
|
||||
if file_path.exists():
|
||||
file_path.unlink()
|
||||
|
||||
# Delete metadata from database
|
||||
await self.sql_store.delete("openai_files", where={"id": file_id})
|
||||
|
||||
return OpenAIFileDeleteResponse(
|
||||
id=file_id,
|
||||
deleted=True,
|
||||
)
|
||||
|
||||
async def openai_retrieve_file_content(self, file_id: str) -> Response:
|
||||
"""Returns the contents of the specified file."""
|
||||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
# Get file metadata
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ValueError(f"File with id {file_id} not found")
|
||||
|
||||
# Read file content
|
||||
file_path = Path(row["file_path"])
|
||||
if not file_path.exists():
|
||||
raise ValueError(f"File content not found on disk: {file_path}")
|
||||
|
||||
with open(file_path, "rb") as f:
|
||||
content = f.read()
|
||||
|
||||
# Return as binary response with appropriate content type
|
||||
return Response(
|
||||
content=content,
|
||||
media_type="application/octet-stream",
|
||||
headers={"Content-Disposition": f'attachment; filename="{row["filename"]}"'},
|
||||
)
|
|
@ -40,6 +40,7 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -410,6 +411,16 @@ class VLLMInferenceImpl(
|
|||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -30,7 +30,7 @@ class TelemetryConfig(BaseModel):
|
|||
)
|
||||
service_name: str = Field(
|
||||
# service name is always the same, use zero-width space to avoid clutter
|
||||
default="",
|
||||
default="\u200b",
|
||||
description="The service name to use for telemetry",
|
||||
)
|
||||
sinks: list[TelemetrySink] = Field(
|
||||
|
@ -52,7 +52,7 @@ class TelemetryConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, db_name: str = "trace_store.db") -> dict[str, Any]:
|
||||
return {
|
||||
"service_name": "${env.OTEL_SERVICE_NAME:}",
|
||||
"service_name": "${env.OTEL_SERVICE_NAME:\u200b}",
|
||||
"sinks": "${env.TELEMETRY_SINKS:console,sqlite}",
|
||||
"sqlite_db_path": "${env.SQLITE_STORE_DIR:" + __distro_dir__ + "}/" + db_name,
|
||||
}
|
||||
|
|
|
@ -146,7 +146,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
|
|||
]
|
||||
for i, chunk in enumerate(chunks):
|
||||
metadata = chunk.metadata
|
||||
tokens += metadata["token_count"]
|
||||
tokens += metadata.get("token_count", 0)
|
||||
tokens += metadata.get("metadata_token_count", 0)
|
||||
|
||||
if tokens > query_config.max_tokens_in_context:
|
||||
|
|
|
@ -24,7 +24,7 @@ def available_providers() -> list[ProviderSpec]:
|
|||
"pandas",
|
||||
"scikit-learn",
|
||||
]
|
||||
+ kvstore_dependencies(),
|
||||
+ kvstore_dependencies(), # TODO make this dynamic based on the kvstore config
|
||||
module="llama_stack.providers.inline.agents.meta_reference",
|
||||
config_class="llama_stack.providers.inline.agents.meta_reference.MetaReferenceAgentsImplConfig",
|
||||
api_dependencies=[
|
||||
|
|
|
@ -4,8 +4,22 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import ProviderSpec
|
||||
from llama_stack.providers.datatypes import (
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
)
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import sql_store_pip_packages
|
||||
|
||||
|
||||
def available_providers() -> list[ProviderSpec]:
|
||||
return []
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.files,
|
||||
provider_type="inline::localfs",
|
||||
# TODO: make this dynamic according to the sql store type
|
||||
pip_packages=sql_store_pip_packages,
|
||||
module="llama_stack.providers.inline.files.localfs",
|
||||
config_class="llama_stack.providers.inline.files.localfs.config.LocalfsFilesImplConfig",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -15,7 +15,6 @@ from llama_stack.providers.datatypes import (
|
|||
|
||||
META_REFERENCE_DEPS = [
|
||||
"accelerate",
|
||||
"blobfile",
|
||||
"fairscale",
|
||||
"torch",
|
||||
"torchvision",
|
||||
|
|
|
@ -20,7 +20,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
api=Api.tool_runtime,
|
||||
provider_type="inline::rag-runtime",
|
||||
pip_packages=[
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"pypdf",
|
||||
"tqdm",
|
||||
|
|
|
@ -22,6 +22,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -197,3 +198,13 @@ class BedrockInferenceAdapter(
|
|||
response_body = json.loads(response.get("body").read())
|
||||
embeddings.append(response_body.get("embedding"))
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -21,6 +21,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -194,3 +195,13 @@ class CerebrasInferenceAdapter(
|
|||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -20,6 +20,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -152,3 +153,13 @@ class DatabricksInferenceAdapter(
|
|||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -37,6 +37,7 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -254,7 +255,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
params = {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
"stream": bool(request.stream),
|
||||
**self._build_options(request.sampling_params, request.response_format, request.logprobs),
|
||||
}
|
||||
logger.debug(f"params to fireworks: {params}")
|
||||
|
@ -286,6 +287,16 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -29,6 +29,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -238,6 +239,16 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
#
|
||||
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -12,7 +12,7 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_model_entry,
|
||||
)
|
||||
|
||||
model_entries = [
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1:8b-instruct-fp16",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
|
@ -32,6 +33,7 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -76,7 +78,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
request_has_media,
|
||||
)
|
||||
|
||||
from .models import model_entries
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
@ -86,7 +88,7 @@ class OllamaInferenceAdapter(
|
|||
ModelsProtocolPrivate,
|
||||
):
|
||||
def __init__(self, url: str) -> None:
|
||||
self.register_helper = ModelRegistryHelper(model_entries)
|
||||
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
|
||||
self.url = url
|
||||
|
||||
@property
|
||||
|
@ -343,21 +345,27 @@ class OllamaInferenceAdapter(
|
|||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError("Model provider_resource_id cannot be None")
|
||||
|
||||
if model.model_type == ModelType.embedding:
|
||||
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
# TODO: you should pull here only if the model is not found in a list
|
||||
response = await self.client.list()
|
||||
if model.provider_resource_id not in [m.model for m in response.models]:
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
|
||||
# we use list() here instead of ps() -
|
||||
# - ps() only lists running models, not available models
|
||||
# - models not currently running are run by the ollama server as needed
|
||||
response = await self.client.list()
|
||||
available_models = [m["model"] for m in response["models"]]
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError("Model provider_resource_id cannot be None")
|
||||
available_models = [m.model for m in response.models]
|
||||
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
|
||||
if provider_resource_id is None:
|
||||
provider_resource_id = model.provider_resource_id
|
||||
if provider_resource_id not in available_models:
|
||||
available_models_latest = [m["model"].split(":latest")[0] for m in response["models"]]
|
||||
available_models_latest = [m.model.split(":latest")[0] for m in response.models]
|
||||
if provider_resource_id in available_models_latest:
|
||||
logger.warning(
|
||||
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
|
||||
|
@ -370,6 +378,16 @@ class OllamaInferenceAdapter(
|
|||
|
||||
return model
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -469,7 +487,25 @@ class OllamaInferenceAdapter(
|
|||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self.openai_client.chat.completions.create(**params) # type: ignore
|
||||
response = await self.openai_client.chat.completions.create(**params)
|
||||
return await self._adjust_ollama_chat_completion_response_ids(response)
|
||||
|
||||
async def _adjust_ollama_chat_completion_response_ids(
|
||||
self,
|
||||
response: OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk],
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
id = f"chatcmpl-{uuid.uuid4()}"
|
||||
if isinstance(response, AsyncIterator):
|
||||
|
||||
async def stream_with_chunk_ids() -> AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
async for chunk in response:
|
||||
chunk.id = id
|
||||
yield chunk
|
||||
|
||||
return stream_with_chunk_ids()
|
||||
else:
|
||||
response.id = id
|
||||
return response
|
||||
|
||||
async def batch_completion(
|
||||
self,
|
||||
|
|
|
@ -14,6 +14,9 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -38,6 +41,7 @@ logger = logging.getLogger(__name__)
|
|||
# | batch_chat_completion | LiteLLMOpenAIMixin |
|
||||
# | openai_completion | AsyncOpenAI |
|
||||
# | openai_chat_completion | AsyncOpenAI |
|
||||
# | openai_embeddings | AsyncOpenAI |
|
||||
#
|
||||
class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
def __init__(self, config: OpenAIConfig) -> None:
|
||||
|
@ -171,3 +175,51 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
user=user,
|
||||
)
|
||||
return await self._openai_client.chat.completions.create(**params)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
||||
if model_id.startswith("openai/"):
|
||||
model_id = model_id[len("openai/") :]
|
||||
|
||||
# Prepare parameters for OpenAI embeddings API
|
||||
params = {
|
||||
"model": model_id,
|
||||
"input": input,
|
||||
}
|
||||
|
||||
if encoding_format is not None:
|
||||
params["encoding_format"] = encoding_format
|
||||
if dimensions is not None:
|
||||
params["dimensions"] = dimensions
|
||||
if user is not None:
|
||||
params["user"] = user
|
||||
|
||||
# Call OpenAI embeddings API
|
||||
response = await self._openai_client.embeddings.create(**params)
|
||||
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response.data):
|
||||
data.append(
|
||||
OpenAIEmbeddingData(
|
||||
embedding=embedding_data.embedding,
|
||||
index=i,
|
||||
)
|
||||
)
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=response.model,
|
||||
usage=usage,
|
||||
)
|
||||
|
|
|
@ -19,6 +19,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -210,6 +211,16 @@ class PassthroughInferenceAdapter(Inference):
|
|||
task_type=task_type,
|
||||
)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -8,6 +8,7 @@ from collections.abc import AsyncGenerator
|
|||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.inference.inference import OpenAIEmbeddingsResponse
|
||||
|
||||
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
|
@ -134,3 +135,13 @@ class RunpodInferenceAdapter(
|
|||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -218,7 +218,7 @@ class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
"json_schema": {
|
||||
"name": name,
|
||||
"schema": fmt,
|
||||
"strict": True,
|
||||
"strict": False,
|
||||
},
|
||||
}
|
||||
if request.tools:
|
||||
|
|
|
@ -23,6 +23,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -291,6 +292,16 @@ class _HfAdapter(
|
|||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class TGIAdapter(_HfAdapter):
|
||||
async def initialize(self, config: TGIImplConfig) -> None:
|
||||
|
|
|
@ -23,6 +23,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -267,6 +268,16 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
embeddings = [item.embedding for item in r.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -38,6 +38,7 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -507,6 +508,16 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -21,6 +21,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
@ -260,6 +261,16 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError("embedding is not supported for watsonx")
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -4,7 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import struct
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -15,6 +17,9 @@ from llama_stack.apis.inference import (
|
|||
EmbeddingTaskType,
|
||||
InterleavedContentItem,
|
||||
ModelStore,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
TextTruncation,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
|
@ -43,6 +48,50 @@ class SentenceTransformerEmbeddingMixin:
|
|||
)
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
# Convert input to list format if it's a single string
|
||||
input_list = [input] if isinstance(input, str) else input
|
||||
if not input_list:
|
||||
raise ValueError("Empty list not supported")
|
||||
|
||||
# Get the model and generate embeddings
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
embedding_model = self._load_sentence_transformer_model(model_obj.provider_resource_id)
|
||||
embeddings = embedding_model.encode(input_list, show_progress_bar=False)
|
||||
|
||||
# Convert embeddings to the requested format
|
||||
data = []
|
||||
for i, embedding in enumerate(embeddings):
|
||||
if encoding_format == "base64":
|
||||
# Convert float array to base64 string
|
||||
float_bytes = struct.pack(f"{len(embedding)}f", *embedding)
|
||||
embedding_value = base64.b64encode(float_bytes).decode("ascii")
|
||||
else:
|
||||
# Default to float format
|
||||
embedding_value = embedding.tolist()
|
||||
|
||||
data.append(
|
||||
OpenAIEmbeddingData(
|
||||
embedding=embedding_value,
|
||||
index=i,
|
||||
)
|
||||
)
|
||||
|
||||
# Not returning actual token usage
|
||||
usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=model_obj.provider_resource_id,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
def _load_sentence_transformer_model(self, model: str) -> "SentenceTransformer":
|
||||
global EMBEDDING_MODELS
|
||||
|
||||
|
|
|
@ -4,6 +4,8 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import struct
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
|
@ -35,6 +37,9 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -264,6 +269,52 @@ class LiteLLMOpenAIMixin(
|
|||
embeddings = [data["embedding"] for data in response["data"]]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Convert input to list if it's a string
|
||||
input_list = [input] if isinstance(input, str) else input
|
||||
|
||||
# Call litellm embedding function
|
||||
# litellm.drop_params = True
|
||||
response = litellm.embedding(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
input=input_list,
|
||||
api_key=self.get_api_key(),
|
||||
api_base=self.api_base,
|
||||
dimensions=dimensions,
|
||||
)
|
||||
|
||||
# Convert response to OpenAI format
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response["data"]):
|
||||
# we encode to base64 if the encoding format is base64 in the request
|
||||
if encoding_format == "base64":
|
||||
byte_data = b"".join(struct.pack("f", f) for f in embedding_data["embedding"])
|
||||
embedding = base64.b64encode(byte_data).decode("utf-8")
|
||||
else:
|
||||
embedding = embedding_data["embedding"]
|
||||
|
||||
data.append(OpenAIEmbeddingData(embedding=embedding, index=i))
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response["usage"]["prompt_tokens"],
|
||||
total_tokens=response["usage"]["total_tokens"],
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=model_obj.provider_resource_id,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -36,6 +36,10 @@ class RedisKVStoreConfig(CommonConfig):
|
|||
def url(self) -> str:
|
||||
return f"redis://{self.host}:{self.port}"
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["redis"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls):
|
||||
return {
|
||||
|
@ -53,6 +57,10 @@ class SqliteKVStoreConfig(CommonConfig):
|
|||
description="File path for the sqlite database",
|
||||
)
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["aiosqlite"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, db_name: str = "kvstore.db"):
|
||||
return {
|
||||
|
@ -65,22 +73,22 @@ class SqliteKVStoreConfig(CommonConfig):
|
|||
class PostgresKVStoreConfig(CommonConfig):
|
||||
type: Literal[KVStoreType.postgres.value] = KVStoreType.postgres.value
|
||||
host: str = "localhost"
|
||||
port: int = 5432
|
||||
port: str = "5432"
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: str | None = None
|
||||
table_name: str = "llamastack_kvstore"
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, table_name: str = "llamastack_kvstore"):
|
||||
def sample_run_config(cls, table_name: str = "llamastack_kvstore", **kwargs):
|
||||
return {
|
||||
"type": "postgres",
|
||||
"namespace": None,
|
||||
"host": "${env.POSTGRES_HOST:localhost}",
|
||||
"port": "${env.POSTGRES_PORT:5432}",
|
||||
"db": "${env.POSTGRES_DB}",
|
||||
"user": "${env.POSTGRES_USER}",
|
||||
"password": "${env.POSTGRES_PASSWORD}",
|
||||
"db": "${env.POSTGRES_DB:llamastack}",
|
||||
"user": "${env.POSTGRES_USER:llamastack}",
|
||||
"password": "${env.POSTGRES_PASSWORD:llamastack}",
|
||||
"table_name": "${env.POSTGRES_TABLE_NAME:" + table_name + "}",
|
||||
}
|
||||
|
||||
|
@ -100,6 +108,10 @@ class PostgresKVStoreConfig(CommonConfig):
|
|||
raise ValueError("Table name must be less than 63 characters")
|
||||
return v
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["psycopg2-binary"]
|
||||
|
||||
|
||||
class MongoDBKVStoreConfig(CommonConfig):
|
||||
type: Literal[KVStoreType.mongodb.value] = KVStoreType.mongodb.value
|
||||
|
@ -110,6 +122,10 @@ class MongoDBKVStoreConfig(CommonConfig):
|
|||
password: str | None = None
|
||||
collection_name: str = "llamastack_kvstore"
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["pymongo"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, collection_name: str = "llamastack_kvstore"):
|
||||
return {
|
||||
|
|
|
@ -10,6 +10,13 @@ from .config import KVStoreConfig, KVStoreType
|
|||
|
||||
|
||||
def kvstore_dependencies():
|
||||
"""
|
||||
Returns all possible kvstore dependencies for registry/provider specifications.
|
||||
|
||||
NOTE: For specific kvstore implementations, use config.pip_packages instead.
|
||||
This function returns the union of all dependencies for cases where the specific
|
||||
kvstore type is not known at declaration time (e.g., provider registries).
|
||||
"""
|
||||
return ["aiosqlite", "psycopg2-binary", "redis", "pymongo"]
|
||||
|
||||
|
||||
|
|
|
@ -171,6 +171,22 @@ def make_overlapped_chunks(
|
|||
return chunks
|
||||
|
||||
|
||||
def _validate_embedding(embedding: NDArray, index: int, expected_dimension: int):
|
||||
"""Helper method to validate embedding format and dimensions"""
|
||||
if not isinstance(embedding, (list | np.ndarray)):
|
||||
raise ValueError(f"Embedding at index {index} must be a list or numpy array, got {type(embedding)}")
|
||||
|
||||
if isinstance(embedding, np.ndarray):
|
||||
if not np.issubdtype(embedding.dtype, np.number):
|
||||
raise ValueError(f"Embedding at index {index} contains non-numeric values")
|
||||
else:
|
||||
if not all(isinstance(e, (float | int | np.number)) for e in embedding):
|
||||
raise ValueError(f"Embedding at index {index} contains non-numeric values")
|
||||
|
||||
if len(embedding) != expected_dimension:
|
||||
raise ValueError(f"Embedding at index {index} has dimension {len(embedding)}, expected {expected_dimension}")
|
||||
|
||||
|
||||
class EmbeddingIndex(ABC):
|
||||
@abstractmethod
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
|
@ -199,11 +215,22 @@ class VectorDBWithIndex:
|
|||
self,
|
||||
chunks: list[Chunk],
|
||||
) -> None:
|
||||
embeddings_response = await self.inference_api.embeddings(
|
||||
self.vector_db.embedding_model, [x.content for x in chunks]
|
||||
)
|
||||
embeddings = np.array(embeddings_response.embeddings)
|
||||
chunks_to_embed = []
|
||||
for i, c in enumerate(chunks):
|
||||
if c.embedding is None:
|
||||
chunks_to_embed.append(c)
|
||||
else:
|
||||
_validate_embedding(c.embedding, i, self.vector_db.embedding_dimension)
|
||||
|
||||
if chunks_to_embed:
|
||||
resp = await self.inference_api.embeddings(
|
||||
self.vector_db.embedding_model,
|
||||
[c.content for c in chunks_to_embed],
|
||||
)
|
||||
for c, embedding in zip(chunks_to_embed, resp.embeddings, strict=False):
|
||||
c.embedding = embedding
|
||||
|
||||
embeddings = np.array([c.embedding for c in chunks], dtype=np.float32)
|
||||
await self.index.add_chunks(chunks, embeddings)
|
||||
|
||||
async def query_chunks(
|
||||
|
|
|
@ -19,10 +19,10 @@ from sqlalchemy import (
|
|||
Text,
|
||||
select,
|
||||
)
|
||||
from sqlalchemy.ext.asyncio import create_async_engine
|
||||
from sqlalchemy.ext.asyncio import async_sessionmaker, create_async_engine
|
||||
|
||||
from ..api import ColumnDefinition, ColumnType, SqlStore
|
||||
from ..sqlstore import SqliteSqlStoreConfig
|
||||
from .api import ColumnDefinition, ColumnType, SqlStore
|
||||
from .sqlstore import SqlAlchemySqlStoreConfig
|
||||
|
||||
TYPE_MAPPING: dict[ColumnType, Any] = {
|
||||
ColumnType.INTEGER: Integer,
|
||||
|
@ -35,9 +35,10 @@ TYPE_MAPPING: dict[ColumnType, Any] = {
|
|||
}
|
||||
|
||||
|
||||
class SqliteSqlStoreImpl(SqlStore):
|
||||
def __init__(self, config: SqliteSqlStoreConfig):
|
||||
self.engine = create_async_engine(config.engine_str)
|
||||
class SqlAlchemySqlStoreImpl(SqlStore):
|
||||
def __init__(self, config: SqlAlchemySqlStoreConfig):
|
||||
self.config = config
|
||||
self.async_session = async_sessionmaker(create_async_engine(config.engine_str))
|
||||
self.metadata = MetaData()
|
||||
|
||||
async def create_table(
|
||||
|
@ -78,13 +79,14 @@ class SqliteSqlStoreImpl(SqlStore):
|
|||
|
||||
# Create the table in the database if it doesn't exist
|
||||
# checkfirst=True ensures it doesn't try to recreate if it's already there
|
||||
async with self.engine.begin() as conn:
|
||||
engine = create_async_engine(self.config.engine_str)
|
||||
async with engine.begin() as conn:
|
||||
await conn.run_sync(self.metadata.create_all, tables=[sqlalchemy_table], checkfirst=True)
|
||||
|
||||
async def insert(self, table: str, data: Mapping[str, Any]) -> None:
|
||||
async with self.engine.begin() as conn:
|
||||
await conn.execute(self.metadata.tables[table].insert(), data)
|
||||
await conn.commit()
|
||||
async with self.async_session() as session:
|
||||
await session.execute(self.metadata.tables[table].insert(), data)
|
||||
await session.commit()
|
||||
|
||||
async def fetch_all(
|
||||
self,
|
||||
|
@ -93,7 +95,7 @@ class SqliteSqlStoreImpl(SqlStore):
|
|||
limit: int | None = None,
|
||||
order_by: list[tuple[str, Literal["asc", "desc"]]] | None = None,
|
||||
) -> list[dict[str, Any]]:
|
||||
async with self.engine.begin() as conn:
|
||||
async with self.async_session() as session:
|
||||
query = select(self.metadata.tables[table])
|
||||
if where:
|
||||
for key, value in where.items():
|
||||
|
@ -117,7 +119,7 @@ class SqliteSqlStoreImpl(SqlStore):
|
|||
query = query.order_by(self.metadata.tables[table].c[name].desc())
|
||||
else:
|
||||
raise ValueError(f"Invalid order '{order_type}' for column '{name}'")
|
||||
result = await conn.execute(query)
|
||||
result = await session.execute(query)
|
||||
if result.rowcount == 0:
|
||||
return []
|
||||
return [dict(row._mapping) for row in result]
|
||||
|
@ -142,20 +144,20 @@ class SqliteSqlStoreImpl(SqlStore):
|
|||
if not where:
|
||||
raise ValueError("where is required for update")
|
||||
|
||||
async with self.engine.begin() as conn:
|
||||
async with self.async_session() as session:
|
||||
stmt = self.metadata.tables[table].update()
|
||||
for key, value in where.items():
|
||||
stmt = stmt.where(self.metadata.tables[table].c[key] == value)
|
||||
await conn.execute(stmt, data)
|
||||
await conn.commit()
|
||||
await session.execute(stmt, data)
|
||||
await session.commit()
|
||||
|
||||
async def delete(self, table: str, where: Mapping[str, Any]) -> None:
|
||||
if not where:
|
||||
raise ValueError("where is required for delete")
|
||||
|
||||
async with self.engine.begin() as conn:
|
||||
async with self.async_session() as session:
|
||||
stmt = self.metadata.tables[table].delete()
|
||||
for key, value in where.items():
|
||||
stmt = stmt.where(self.metadata.tables[table].c[key] == value)
|
||||
await conn.execute(stmt)
|
||||
await conn.commit()
|
||||
await session.execute(stmt)
|
||||
await session.commit()
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from abc import abstractmethod
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Annotated, Literal
|
||||
|
@ -15,13 +16,26 @@ from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
|
|||
|
||||
from .api import SqlStore
|
||||
|
||||
sql_store_pip_packages = ["sqlalchemy[asyncio]", "aiosqlite", "asyncpg"]
|
||||
|
||||
|
||||
class SqlStoreType(Enum):
|
||||
sqlite = "sqlite"
|
||||
postgres = "postgres"
|
||||
|
||||
|
||||
class SqliteSqlStoreConfig(BaseModel):
|
||||
class SqlAlchemySqlStoreConfig(BaseModel):
|
||||
@property
|
||||
@abstractmethod
|
||||
def engine_str(self) -> str: ...
|
||||
|
||||
# TODO: move this when we have a better way to specify dependencies with internal APIs
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["sqlalchemy[asyncio]"]
|
||||
|
||||
|
||||
class SqliteSqlStoreConfig(SqlAlchemySqlStoreConfig):
|
||||
type: Literal["sqlite"] = SqlStoreType.sqlite.value
|
||||
db_path: str = Field(
|
||||
default=(RUNTIME_BASE_DIR / "sqlstore.db").as_posix(),
|
||||
|
@ -39,18 +53,37 @@ class SqliteSqlStoreConfig(BaseModel):
|
|||
db_path="${env.SQLITE_STORE_DIR:" + __distro_dir__ + "}/" + db_name,
|
||||
)
|
||||
|
||||
# TODO: move this when we have a better way to specify dependencies with internal APIs
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["sqlalchemy[asyncio]"]
|
||||
return super().pip_packages + ["aiosqlite"]
|
||||
|
||||
|
||||
class PostgresSqlStoreConfig(BaseModel):
|
||||
class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
|
||||
type: Literal["postgres"] = SqlStoreType.postgres.value
|
||||
host: str = "localhost"
|
||||
port: str = "5432"
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: str | None = None
|
||||
|
||||
@property
|
||||
def engine_str(self) -> str:
|
||||
return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}"
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
raise NotImplementedError("Postgres is not implemented yet")
|
||||
return super().pip_packages + ["asyncpg"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs):
|
||||
return cls(
|
||||
type="postgres",
|
||||
host="${env.POSTGRES_HOST:localhost}",
|
||||
port="${env.POSTGRES_PORT:5432}",
|
||||
db="${env.POSTGRES_DB:llamastack}",
|
||||
user="${env.POSTGRES_USER:llamastack}",
|
||||
password="${env.POSTGRES_PASSWORD:llamastack}",
|
||||
)
|
||||
|
||||
|
||||
SqlStoreConfig = Annotated[
|
||||
|
@ -60,12 +93,10 @@ SqlStoreConfig = Annotated[
|
|||
|
||||
|
||||
def sqlstore_impl(config: SqlStoreConfig) -> SqlStore:
|
||||
if config.type == SqlStoreType.sqlite.value:
|
||||
from .sqlite.sqlite import SqliteSqlStoreImpl
|
||||
if config.type in [SqlStoreType.sqlite.value, SqlStoreType.postgres.value]:
|
||||
from .sqlalchemy_sqlstore import SqlAlchemySqlStoreImpl
|
||||
|
||||
impl = SqliteSqlStoreImpl(config)
|
||||
elif config.type == SqlStoreType.postgres.value:
|
||||
raise NotImplementedError("Postgres is not implemented yet")
|
||||
impl = SqlAlchemySqlStoreImpl(config)
|
||||
else:
|
||||
raise ValueError(f"Unknown sqlstore type {config.type}")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue