mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-07 19:12:09 +00:00
Added draft implementation of built-in preprocessing for RAG.
This commit is contained in:
parent
5014de434e
commit
1a6e71c61f
9 changed files with 299 additions and 4 deletions
|
@ -26,8 +26,8 @@ class PreprocessingDataType(Enum):
|
|||
@json_schema_type
|
||||
class PreprocessingInput(BaseModel):
|
||||
preprocessor_input_id: str
|
||||
preprocessor_input_type: Optional[PreprocessingDataType]
|
||||
path_or_content: str | URL
|
||||
preprocessor_input_type: Optional[PreprocessingDataType] = None
|
||||
path_or_content: str | InterleavedContent | URL
|
||||
|
||||
|
||||
PreprocessorOptions = Dict[str, Any]
|
||||
|
@ -36,7 +36,7 @@ PreprocessorOptions = Dict[str, Any]
|
|||
@json_schema_type
|
||||
class PreprocessingResponse(BaseModel):
|
||||
status: bool
|
||||
results: Optional[List[str | InterleavedContent | Chunk]]
|
||||
results: Optional[List[str | InterleavedContent | Chunk]] = None
|
||||
|
||||
|
||||
class PreprocessorStore(Protocol):
|
||||
|
|
18
llama_stack/providers/inline/preprocessing/basic/__init__.py
Normal file
18
llama_stack/providers/inline/preprocessing/basic/__init__.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import InlineBasicPreprocessorConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: InlineBasicPreprocessorConfig,
|
||||
_deps,
|
||||
):
|
||||
from .basic import InclineBasicPreprocessorImpl
|
||||
|
||||
impl = InclineBasicPreprocessorImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
121
llama_stack/providers/inline/preprocessing/basic/basic.py
Normal file
121
llama_stack/providers/inline/preprocessing/basic/basic.py
Normal file
|
@ -0,0 +1,121 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import logging
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
import httpx
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataType,
|
||||
PreprocessingInput,
|
||||
PreprocessingResponse,
|
||||
Preprocessor,
|
||||
PreprocessorOptions,
|
||||
)
|
||||
from llama_stack.providers.datatypes import PreprocessorsProtocolPrivate
|
||||
from llama_stack.providers.inline.preprocessing.basic.config import InlineBasicPreprocessorConfig
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
from llama_stack.providers.utils.memory.vector_store import content_from_data, parse_pdf
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class InclineBasicPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
||||
# this preprocessor can either receive documents (text or binary) or document URIs
|
||||
INPUT_TYPES = [
|
||||
PreprocessingDataType.binary_document,
|
||||
PreprocessingDataType.raw_text_document,
|
||||
PreprocessingDataType.document_uri,
|
||||
]
|
||||
|
||||
# this preprocessor optionally retrieves the documents and converts them into plain text
|
||||
OUTPUT_TYPES = [PreprocessingDataType.raw_text_document]
|
||||
|
||||
URL_VALIDATION_PATTERN = re.compile("^(https?://|file://|data:)")
|
||||
|
||||
def __init__(self, config: InlineBasicPreprocessorConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def register_preprocessor(self, preprocessor: Preprocessor) -> None: ...
|
||||
|
||||
async def unregister_preprocessor(self, preprocessor_id: str) -> None: ...
|
||||
|
||||
async def preprocess(
|
||||
self,
|
||||
preprocessor_id: str,
|
||||
preprocessor_inputs: List[PreprocessingInput],
|
||||
options: PreprocessorOptions,
|
||||
) -> PreprocessingResponse:
|
||||
results = []
|
||||
|
||||
for inp in preprocessor_inputs:
|
||||
is_pdf = options["binary_document_type"] == "pdf"
|
||||
input_type = self._resolve_input_type(inp, is_pdf)
|
||||
|
||||
if input_type == PreprocessingDataType.document_uri:
|
||||
document = await self._fetch_document(inp, is_pdf)
|
||||
if document is None:
|
||||
continue
|
||||
elif input_type == PreprocessingDataType.binary_document:
|
||||
document = inp.path_or_content
|
||||
if not is_pdf:
|
||||
log.error(f"Unsupported binary document type: {options['binary_document_type']}")
|
||||
continue
|
||||
elif input_type == PreprocessingDataType.raw_text_document:
|
||||
document = interleaved_content_as_str(inp.path_or_content)
|
||||
else:
|
||||
log.error(f"Unexpected preprocessor input type: {inp.preprocessor_input_type}")
|
||||
continue
|
||||
|
||||
if is_pdf:
|
||||
document = parse_pdf(document)
|
||||
|
||||
results.append(document)
|
||||
|
||||
return PreprocessingResponse(status=True, results=results)
|
||||
|
||||
@staticmethod
|
||||
async def _resolve_input_type(preprocessor_input: PreprocessingInput, is_pdf: bool) -> PreprocessingDataType:
|
||||
if preprocessor_input.preprocessor_input_type is not None:
|
||||
return preprocessor_input.preprocessor_input_type
|
||||
|
||||
if isinstance(preprocessor_input.path_or_content, URL):
|
||||
return PreprocessingDataType.document_uri
|
||||
if InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(preprocessor_input.path_or_content):
|
||||
return PreprocessingDataType.document_uri
|
||||
if is_pdf:
|
||||
return PreprocessingDataType.binary_document
|
||||
|
||||
return PreprocessingDataType.raw_text_document
|
||||
|
||||
@staticmethod
|
||||
async def _fetch_document(preprocessor_input: PreprocessingInput, is_pdf: bool) -> str | None:
|
||||
if isinstance(preprocessor_input.path_or_content, str):
|
||||
url = preprocessor_input.path_or_content
|
||||
if not InclineBasicPreprocessorImpl.URL_VALIDATION_PATTERN.match(url):
|
||||
log.error(f"Unexpected URL: {url}")
|
||||
return None
|
||||
elif isinstance(preprocessor_input.path_or_content, URL):
|
||||
url = preprocessor_input.path_or_content.uri
|
||||
else:
|
||||
log.error(
|
||||
f"Unexpected type {type(preprocessor_input.path_or_content)} for input {preprocessor_input.path_or_content}, skipping this input."
|
||||
)
|
||||
return None
|
||||
|
||||
if url.startswith("data:"):
|
||||
return content_from_data(url)
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(url)
|
||||
return r.content if is_pdf else r.text
|
|
@ -0,0 +1,9 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class InlineBasicPreprocessorConfig(BaseModel): ...
|
|
@ -3,6 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import logging
|
||||
from typing import List
|
||||
|
||||
from docling.document_converter import DocumentConverter
|
||||
|
@ -21,6 +22,8 @@ from llama_stack.apis.vector_io import Chunk
|
|||
from llama_stack.providers.datatypes import PreprocessorsProtocolPrivate
|
||||
from llama_stack.providers.inline.preprocessing.docling import InlineDoclingConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class InclineDoclingPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
||||
# this preprocessor receives URLs / paths to documents as input
|
||||
|
@ -58,7 +61,10 @@ class InclineDoclingPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate
|
|||
elif isinstance(inp.path_or_content, URL):
|
||||
url = inp.path_or_content.uri
|
||||
else:
|
||||
raise ValueError(f"Unexpected type {type(inp.path_or_content)} for input {inp.path_or_content}")
|
||||
log.error(
|
||||
f"Unexpected type {type(inp.path_or_content)} for input {inp.path_or_content}, skipping this input."
|
||||
)
|
||||
continue
|
||||
|
||||
converted_document = self.converter.convert(url).document
|
||||
if self.config.chunk:
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import InclineSimpleChunkingConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: InclineSimpleChunkingConfig,
|
||||
_deps,
|
||||
):
|
||||
from .simple_chunking import InclineSimpleChunkingImpl
|
||||
|
||||
impl = InclineSimpleChunkingImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -0,0 +1,11 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class InclineSimpleChunkingConfig(BaseModel):
|
||||
chunk_size_in_tokens: int = 512
|
||||
chunk_overlap_ratio: int = 4
|
|
@ -0,0 +1,96 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import List, Tuple
|
||||
|
||||
from llama_models.llama3.api import Tokenizer
|
||||
|
||||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataType,
|
||||
PreprocessingInput,
|
||||
PreprocessingResponse,
|
||||
Preprocessor,
|
||||
PreprocessorOptions,
|
||||
)
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.providers.datatypes import PreprocessorsProtocolPrivate
|
||||
from llama_stack.providers.inline.preprocessing.simple_chunking import InclineSimpleChunkingConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SimpleChunkingOptions(Enum):
|
||||
chunk_size_in_tokens = "chunk_size_in_tokens"
|
||||
chunk_overlap_ratio = "chunk_overlap_ratio"
|
||||
|
||||
|
||||
class InclineSimpleChunkingImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
||||
# this preprocessor receives plain text and returns chunks
|
||||
INPUT_TYPES = [PreprocessingDataType.raw_text_document]
|
||||
OUTPUT_TYPES = [PreprocessingDataType.chunks]
|
||||
|
||||
def __init__(self, config: InclineSimpleChunkingConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def register_preprocessor(self, preprocessor: Preprocessor) -> None: ...
|
||||
|
||||
async def unregister_preprocessor(self, preprocessor_id: str) -> None: ...
|
||||
|
||||
async def preprocess(
|
||||
self,
|
||||
preprocessor_id: str,
|
||||
preprocessor_inputs: List[PreprocessingInput],
|
||||
options: PreprocessorOptions,
|
||||
) -> PreprocessingResponse:
|
||||
chunks = []
|
||||
|
||||
window_len, overlap_len = self._resolve_chunk_size_params(options)
|
||||
|
||||
for inp in preprocessor_inputs:
|
||||
new_chunks = self.make_overlapped_chunks(
|
||||
inp.preprocessor_input_id, inp.path_or_content, window_len, overlap_len
|
||||
)
|
||||
chunks.extend(new_chunks)
|
||||
|
||||
return PreprocessingResponse(status=True, results=chunks)
|
||||
|
||||
def _resolve_chunk_size_params(self, options: PreprocessorOptions) -> Tuple[int, int]:
|
||||
window_len = options.get(str(SimpleChunkingOptions.chunk_size_in_tokens), self.config.chunk_size_in_tokens)
|
||||
|
||||
chunk_overlap_ratio = options.get(
|
||||
str(SimpleChunkingOptions.chunk_overlap_ratio), self.config.chunk_overlap_ratio
|
||||
)
|
||||
overlap_len = window_len // chunk_overlap_ratio
|
||||
|
||||
return window_len, overlap_len
|
||||
|
||||
@staticmethod
|
||||
def make_overlapped_chunks(document_id: str, text: str, window_len: int, overlap_len: int) -> List[Chunk]:
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
tokens = tokenizer.encode(text, bos=False, eos=False)
|
||||
|
||||
chunks = []
|
||||
for i in range(0, len(tokens), window_len - overlap_len):
|
||||
toks = tokens[i : i + window_len]
|
||||
chunk = tokenizer.decode(toks)
|
||||
# chunk is a string
|
||||
chunks.append(
|
||||
Chunk(
|
||||
content=chunk,
|
||||
metadata={
|
||||
"token_count": len(toks),
|
||||
"document_id": document_id,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
return chunks
|
|
@ -23,4 +23,20 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.preprocessing.docling.InlineDoclingConfig",
|
||||
api_dependencies=[],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.preprocessing,
|
||||
provider_type="inline::basic",
|
||||
pip_packages=["httpx", "pypdf"],
|
||||
module="llama_stack.providers.inline.preprocessing.basic",
|
||||
config_class="llama_stack.providers.inline.preprocessing.basic.InlineBasicPreprocessorConfig",
|
||||
api_dependencies=[],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.preprocessing,
|
||||
provider_type="inline::simple_chunking",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.inline.preprocessing.simple_chunking",
|
||||
config_class="llama_stack.providers.inline.preprocessing.simple_chunking.InclineSimpleChunkingConfig",
|
||||
api_dependencies=[],
|
||||
),
|
||||
]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue