[memory refactor][3/n] Introduce RAGToolRuntime as a specialized sub-protocol (#832)

See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Third part:
- we need to make `tool_runtime.rag_tool.query_context()` and
`tool_runtime.rag_tool.insert_documents()` methods work smoothly with
complete type safety. To that end, we introduce a sub-resource path
`tool-runtime/rag-tool/` and make changes to the resolver to make things
work.
- the PR updates the agents implementation to directly call these typed
APIs for memory accesses rather than going through the complex, untyped
"invoke_tool" API. the code looks much nicer and simpler (expectedly.)
- there are a number of hacks in the server resolver implementation
still, we will live with some and fix some

Note that we must make sure the client SDKs are able to handle this
subresource complexity also. Stainless has support for subresources, so
this should be possible but beware.

## Test Plan

Our RAG test is sad (doesn't actually test for actual RAG output) but I
verified that the implementation works. I will work on fixing the RAG
test afterwards.

```bash
pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B
```
This commit is contained in:
Ashwin Bharambe 2025-01-22 10:04:16 -08:00 committed by GitHub
parent 78a481bb22
commit 1a7490470a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
33 changed files with 1648 additions and 1345 deletions

View file

@ -12,10 +12,10 @@ from ..conftest import (
get_test_config_for_api,
)
from ..inference.fixtures import INFERENCE_FIXTURES
from ..memory.fixtures import MEMORY_FIXTURES
from ..safety.fixtures import SAFETY_FIXTURES, safety_model_from_shield
from ..tools.fixtures import TOOL_RUNTIME_FIXTURES
from ..vector_io.fixtures import VECTOR_IO_FIXTURES
from .fixtures import AGENTS_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
@ -23,7 +23,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
{
"inference": "meta_reference",
"safety": "llama_guard",
"memory": "faiss",
"vector_io": "faiss",
"agents": "meta_reference",
"tool_runtime": "memory_and_search",
},
@ -34,7 +34,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
{
"inference": "ollama",
"safety": "llama_guard",
"memory": "faiss",
"vector_io": "faiss",
"agents": "meta_reference",
"tool_runtime": "memory_and_search",
},
@ -46,7 +46,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
"inference": "together",
"safety": "llama_guard",
# make this work with Weaviate which is what the together distro supports
"memory": "faiss",
"vector_io": "faiss",
"agents": "meta_reference",
"tool_runtime": "memory_and_search",
},
@ -57,7 +57,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
{
"inference": "fireworks",
"safety": "llama_guard",
"memory": "faiss",
"vector_io": "faiss",
"agents": "meta_reference",
"tool_runtime": "memory_and_search",
},
@ -68,7 +68,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
{
"inference": "remote",
"safety": "remote",
"memory": "remote",
"vector_io": "remote",
"agents": "remote",
"tool_runtime": "memory_and_search",
},
@ -115,7 +115,7 @@ def pytest_generate_tests(metafunc):
available_fixtures = {
"inference": INFERENCE_FIXTURES,
"safety": SAFETY_FIXTURES,
"memory": MEMORY_FIXTURES,
"vector_io": VECTOR_IO_FIXTURES,
"agents": AGENTS_FIXTURES,
"tool_runtime": TOOL_RUNTIME_FIXTURES,
}

View file

@ -69,7 +69,7 @@ async def agents_stack(
providers = {}
provider_data = {}
for key in ["inference", "safety", "memory", "agents", "tool_runtime"]:
for key in ["inference", "safety", "vector_io", "agents", "tool_runtime"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if key == "inference":
@ -118,7 +118,7 @@ async def agents_stack(
)
test_stack = await construct_stack_for_test(
[Api.agents, Api.inference, Api.safety, Api.memory, Api.tool_runtime],
[Api.agents, Api.inference, Api.safety, Api.vector_io, Api.tool_runtime],
providers,
provider_data,
models=models,

View file

@ -214,9 +214,11 @@ class TestAgents:
turn_response = [
chunk async for chunk in await agents_impl.create_agent_turn(**turn_request)
]
assert len(turn_response) > 0
# FIXME: we need to check the content of the turn response and ensure
# RAG actually worked
@pytest.mark.asyncio
async def test_create_agent_turn_with_tavily_search(
self, agents_stack, search_query_messages, common_params

View file

@ -8,13 +8,12 @@ import uuid
import pytest
from llama_stack.apis.tools import RAGDocument
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB
from llama_stack.apis.vector_io import QueryChunksResponse
from llama_stack.providers.utils.memory.vector_store import (
make_overlapped_chunks,
MemoryBankDocument,
)
from llama_stack.providers.utils.memory.vector_store import make_overlapped_chunks
# How to run this test:
#
@ -26,22 +25,22 @@ from llama_stack.providers.utils.memory.vector_store import (
@pytest.fixture(scope="session")
def sample_chunks():
docs = [
MemoryBankDocument(
RAGDocument(
document_id="doc1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
MemoryBankDocument(
RAGDocument(
document_id="doc2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
MemoryBankDocument(
RAGDocument(
document_id="doc3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
MemoryBankDocument(
RAGDocument(
document_id="doc4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},