mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-21 05:58:40 +00:00
Update sqlite-vec provider to support OpenAI vector store apis
This commit is contained in:
parent
b55f1249e0
commit
1a888a6bfe
2 changed files with 296 additions and 12 deletions
|
|
@ -6,9 +6,11 @@
|
||||||
|
|
||||||
import asyncio
|
import asyncio
|
||||||
import hashlib
|
import hashlib
|
||||||
|
import json
|
||||||
import logging
|
import logging
|
||||||
import sqlite3
|
import sqlite3
|
||||||
import struct
|
import struct
|
||||||
|
import time
|
||||||
import uuid
|
import uuid
|
||||||
from typing import Any, Literal
|
from typing import Any, Literal
|
||||||
|
|
||||||
|
|
@ -37,6 +39,11 @@ VECTOR_SEARCH = "vector"
|
||||||
KEYWORD_SEARCH = "keyword"
|
KEYWORD_SEARCH = "keyword"
|
||||||
SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH}
|
SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH}
|
||||||
|
|
||||||
|
# Constants for OpenAI vector stores (similar to faiss)
|
||||||
|
VERSION = "v3"
|
||||||
|
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
|
||||||
|
CHUNK_MULTIPLIER = 5
|
||||||
|
|
||||||
|
|
||||||
def serialize_vector(vector: list[float]) -> bytes:
|
def serialize_vector(vector: list[float]) -> bytes:
|
||||||
"""Serialize a list of floats into a compact binary representation."""
|
"""Serialize a list of floats into a compact binary representation."""
|
||||||
|
|
@ -307,6 +314,7 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
self.config = config
|
self.config = config
|
||||||
self.inference_api = inference_api
|
self.inference_api = inference_api
|
||||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||||
|
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||||
|
|
||||||
async def initialize(self) -> None:
|
async def initialize(self) -> None:
|
||||||
def _setup_connection():
|
def _setup_connection():
|
||||||
|
|
@ -321,17 +329,29 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
metadata TEXT
|
metadata TEXT
|
||||||
);
|
);
|
||||||
""")
|
""")
|
||||||
|
# Create a table to persist OpenAI vector stores.
|
||||||
|
cur.execute("""
|
||||||
|
CREATE TABLE IF NOT EXISTS openai_vector_stores (
|
||||||
|
id TEXT PRIMARY KEY,
|
||||||
|
metadata TEXT
|
||||||
|
);
|
||||||
|
""")
|
||||||
connection.commit()
|
connection.commit()
|
||||||
# Load any existing vector DB registrations.
|
# Load any existing vector DB registrations.
|
||||||
cur.execute("SELECT metadata FROM vector_dbs")
|
cur.execute("SELECT metadata FROM vector_dbs")
|
||||||
rows = cur.fetchall()
|
vector_db_rows = cur.fetchall()
|
||||||
return rows
|
# Load any existing OpenAI vector stores.
|
||||||
|
cur.execute("SELECT metadata FROM openai_vector_stores")
|
||||||
|
openai_store_rows = cur.fetchall()
|
||||||
|
return vector_db_rows, openai_store_rows
|
||||||
finally:
|
finally:
|
||||||
cur.close()
|
cur.close()
|
||||||
connection.close()
|
connection.close()
|
||||||
|
|
||||||
rows = await asyncio.to_thread(_setup_connection)
|
vector_db_rows, openai_store_rows = await asyncio.to_thread(_setup_connection)
|
||||||
for row in rows:
|
|
||||||
|
# Load existing vector DBs
|
||||||
|
for row in vector_db_rows:
|
||||||
vector_db_data = row[0]
|
vector_db_data = row[0]
|
||||||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||||
index = await SQLiteVecIndex.create(
|
index = await SQLiteVecIndex.create(
|
||||||
|
|
@ -339,6 +359,12 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
)
|
)
|
||||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||||
|
|
||||||
|
# Load existing OpenAI vector stores
|
||||||
|
for row in openai_store_rows:
|
||||||
|
store_data = row[0]
|
||||||
|
store_info = json.loads(store_data)
|
||||||
|
self.openai_vector_stores[store_info["id"]] = store_info
|
||||||
|
|
||||||
async def shutdown(self) -> None:
|
async def shutdown(self) -> None:
|
||||||
# nothing to do since we don't maintain a persistent connection
|
# nothing to do since we don't maintain a persistent connection
|
||||||
pass
|
pass
|
||||||
|
|
@ -409,7 +435,88 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
provider_id: str | None = None,
|
provider_id: str | None = None,
|
||||||
provider_vector_db_id: str | None = None,
|
provider_vector_db_id: str | None = None,
|
||||||
) -> VectorStoreObject:
|
) -> VectorStoreObject:
|
||||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in SQLiteVec")
|
"""Creates a vector store."""
|
||||||
|
# store and vector_db have the same id
|
||||||
|
store_id = name or str(uuid.uuid4())
|
||||||
|
created_at = int(time.time())
|
||||||
|
|
||||||
|
if provider_id is None:
|
||||||
|
raise ValueError("Provider ID is required")
|
||||||
|
|
||||||
|
if embedding_model is None:
|
||||||
|
raise ValueError("Embedding model is required")
|
||||||
|
|
||||||
|
# Use provided embedding dimension or default to 384
|
||||||
|
if embedding_dimension is None:
|
||||||
|
raise ValueError("Embedding dimension is required")
|
||||||
|
|
||||||
|
provider_vector_db_id = provider_vector_db_id or store_id
|
||||||
|
vector_db = VectorDB(
|
||||||
|
identifier=store_id,
|
||||||
|
embedding_dimension=embedding_dimension,
|
||||||
|
embedding_model=embedding_model,
|
||||||
|
provider_id=provider_id,
|
||||||
|
provider_resource_id=provider_vector_db_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Register the vector DB
|
||||||
|
await self.register_vector_db(vector_db)
|
||||||
|
|
||||||
|
# Create OpenAI vector store metadata
|
||||||
|
store_info = {
|
||||||
|
"id": store_id,
|
||||||
|
"object": "vector_store",
|
||||||
|
"created_at": created_at,
|
||||||
|
"name": store_id,
|
||||||
|
"usage_bytes": 0,
|
||||||
|
"file_counts": {},
|
||||||
|
"status": "completed",
|
||||||
|
"expires_after": expires_after,
|
||||||
|
"expires_at": None,
|
||||||
|
"last_active_at": created_at,
|
||||||
|
"file_ids": file_ids or [],
|
||||||
|
"chunking_strategy": chunking_strategy,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Add provider information to metadata if provided
|
||||||
|
metadata = metadata or {}
|
||||||
|
if provider_id:
|
||||||
|
metadata["provider_id"] = provider_id
|
||||||
|
if provider_vector_db_id:
|
||||||
|
metadata["provider_vector_db_id"] = provider_vector_db_id
|
||||||
|
store_info["metadata"] = metadata
|
||||||
|
|
||||||
|
# Store in SQLite database
|
||||||
|
def _store_openai_vector_store():
|
||||||
|
connection = _create_sqlite_connection(self.config.db_path)
|
||||||
|
cur = connection.cursor()
|
||||||
|
try:
|
||||||
|
cur.execute(
|
||||||
|
"INSERT OR REPLACE INTO openai_vector_stores (id, metadata) VALUES (?, ?)",
|
||||||
|
(store_id, json.dumps(store_info)),
|
||||||
|
)
|
||||||
|
connection.commit()
|
||||||
|
finally:
|
||||||
|
cur.close()
|
||||||
|
connection.close()
|
||||||
|
|
||||||
|
await asyncio.to_thread(_store_openai_vector_store)
|
||||||
|
|
||||||
|
# Store in memory cache
|
||||||
|
self.openai_vector_stores[store_id] = store_info
|
||||||
|
|
||||||
|
return VectorStoreObject(
|
||||||
|
id=store_id,
|
||||||
|
created_at=created_at,
|
||||||
|
name=store_id,
|
||||||
|
usage_bytes=0,
|
||||||
|
file_counts={},
|
||||||
|
status="completed",
|
||||||
|
expires_after=expires_after,
|
||||||
|
expires_at=None,
|
||||||
|
last_active_at=created_at,
|
||||||
|
metadata=metadata,
|
||||||
|
)
|
||||||
|
|
||||||
async def openai_list_vector_stores(
|
async def openai_list_vector_stores(
|
||||||
self,
|
self,
|
||||||
|
|
@ -418,13 +525,51 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
after: str | None = None,
|
after: str | None = None,
|
||||||
before: str | None = None,
|
before: str | None = None,
|
||||||
) -> VectorStoreListResponse:
|
) -> VectorStoreListResponse:
|
||||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in SQLiteVec")
|
"""Returns a list of vector stores."""
|
||||||
|
# Get all vector stores
|
||||||
|
all_stores = list(self.openai_vector_stores.values())
|
||||||
|
|
||||||
|
# Sort by created_at
|
||||||
|
reverse_order = order == "desc"
|
||||||
|
all_stores.sort(key=lambda x: x["created_at"], reverse=reverse_order)
|
||||||
|
|
||||||
|
# Apply cursor-based pagination
|
||||||
|
if after:
|
||||||
|
after_index = next((i for i, store in enumerate(all_stores) if store["id"] == after), -1)
|
||||||
|
if after_index >= 0:
|
||||||
|
all_stores = all_stores[after_index + 1 :]
|
||||||
|
|
||||||
|
if before:
|
||||||
|
before_index = next((i for i, store in enumerate(all_stores) if store["id"] == before), len(all_stores))
|
||||||
|
all_stores = all_stores[:before_index]
|
||||||
|
|
||||||
|
# Apply limit
|
||||||
|
limited_stores = all_stores[:limit]
|
||||||
|
# Convert to VectorStoreObject instances
|
||||||
|
data = [VectorStoreObject(**store) for store in limited_stores]
|
||||||
|
|
||||||
|
# Determine pagination info
|
||||||
|
has_more = len(all_stores) > limit
|
||||||
|
first_id = data[0].id if data else None
|
||||||
|
last_id = data[-1].id if data else None
|
||||||
|
|
||||||
|
return VectorStoreListResponse(
|
||||||
|
data=data,
|
||||||
|
has_more=has_more,
|
||||||
|
first_id=first_id,
|
||||||
|
last_id=last_id,
|
||||||
|
)
|
||||||
|
|
||||||
async def openai_retrieve_vector_store(
|
async def openai_retrieve_vector_store(
|
||||||
self,
|
self,
|
||||||
vector_store_id: str,
|
vector_store_id: str,
|
||||||
) -> VectorStoreObject:
|
) -> VectorStoreObject:
|
||||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in SQLiteVec")
|
"""Retrieves a vector store."""
|
||||||
|
if vector_store_id not in self.openai_vector_stores:
|
||||||
|
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||||
|
|
||||||
|
store_info = self.openai_vector_stores[vector_store_id]
|
||||||
|
return VectorStoreObject(**store_info)
|
||||||
|
|
||||||
async def openai_update_vector_store(
|
async def openai_update_vector_store(
|
||||||
self,
|
self,
|
||||||
|
|
@ -433,13 +578,78 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
expires_after: dict[str, Any] | None = None,
|
expires_after: dict[str, Any] | None = None,
|
||||||
metadata: dict[str, Any] | None = None,
|
metadata: dict[str, Any] | None = None,
|
||||||
) -> VectorStoreObject:
|
) -> VectorStoreObject:
|
||||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in SQLiteVec")
|
"""Modifies a vector store."""
|
||||||
|
if vector_store_id not in self.openai_vector_stores:
|
||||||
|
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||||
|
|
||||||
|
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||||
|
|
||||||
|
# Update fields if provided
|
||||||
|
if name is not None:
|
||||||
|
store_info["name"] = name
|
||||||
|
if expires_after is not None:
|
||||||
|
store_info["expires_after"] = expires_after
|
||||||
|
if metadata is not None:
|
||||||
|
store_info["metadata"] = metadata
|
||||||
|
|
||||||
|
# Update last_active_at
|
||||||
|
store_info["last_active_at"] = int(time.time())
|
||||||
|
|
||||||
|
# Save to SQLite database
|
||||||
|
def _update_openai_vector_store():
|
||||||
|
connection = _create_sqlite_connection(self.config.db_path)
|
||||||
|
cur = connection.cursor()
|
||||||
|
try:
|
||||||
|
cur.execute(
|
||||||
|
"UPDATE openai_vector_stores SET metadata = ? WHERE id = ?",
|
||||||
|
(json.dumps(store_info), vector_store_id),
|
||||||
|
)
|
||||||
|
connection.commit()
|
||||||
|
finally:
|
||||||
|
cur.close()
|
||||||
|
connection.close()
|
||||||
|
|
||||||
|
await asyncio.to_thread(_update_openai_vector_store)
|
||||||
|
|
||||||
|
# Update in-memory cache
|
||||||
|
self.openai_vector_stores[vector_store_id] = store_info
|
||||||
|
|
||||||
|
return VectorStoreObject(**store_info)
|
||||||
|
|
||||||
async def openai_delete_vector_store(
|
async def openai_delete_vector_store(
|
||||||
self,
|
self,
|
||||||
vector_store_id: str,
|
vector_store_id: str,
|
||||||
) -> VectorStoreDeleteResponse:
|
) -> VectorStoreDeleteResponse:
|
||||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in SQLiteVec")
|
"""Delete a vector store."""
|
||||||
|
if vector_store_id not in self.openai_vector_stores:
|
||||||
|
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||||
|
|
||||||
|
# Delete from SQLite database
|
||||||
|
def _delete_openai_vector_store():
|
||||||
|
connection = _create_sqlite_connection(self.config.db_path)
|
||||||
|
cur = connection.cursor()
|
||||||
|
try:
|
||||||
|
cur.execute("DELETE FROM openai_vector_stores WHERE id = ?", (vector_store_id,))
|
||||||
|
connection.commit()
|
||||||
|
finally:
|
||||||
|
cur.close()
|
||||||
|
connection.close()
|
||||||
|
|
||||||
|
await asyncio.to_thread(_delete_openai_vector_store)
|
||||||
|
|
||||||
|
# Delete from in-memory cache
|
||||||
|
del self.openai_vector_stores[vector_store_id]
|
||||||
|
|
||||||
|
# Also delete the underlying vector DB
|
||||||
|
try:
|
||||||
|
await self.unregister_vector_db(vector_store_id)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to delete underlying vector DB {vector_store_id}: {e}")
|
||||||
|
|
||||||
|
return VectorStoreDeleteResponse(
|
||||||
|
id=vector_store_id,
|
||||||
|
deleted=True,
|
||||||
|
)
|
||||||
|
|
||||||
async def openai_search_vector_store(
|
async def openai_search_vector_store(
|
||||||
self,
|
self,
|
||||||
|
|
@ -451,7 +661,79 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
rewrite_query: bool = False,
|
rewrite_query: bool = False,
|
||||||
search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
|
||||||
) -> VectorStoreSearchResponse:
|
) -> VectorStoreSearchResponse:
|
||||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in SQLiteVec")
|
"""Search for chunks in a vector store."""
|
||||||
|
if vector_store_id not in self.openai_vector_stores:
|
||||||
|
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||||
|
|
||||||
|
if isinstance(query, list):
|
||||||
|
search_query = " ".join(query)
|
||||||
|
else:
|
||||||
|
search_query = query
|
||||||
|
|
||||||
|
try:
|
||||||
|
score_threshold = ranking_options.get("score_threshold", 0.0) if ranking_options else 0.0
|
||||||
|
params = {
|
||||||
|
"max_chunks": max_num_results * CHUNK_MULTIPLIER,
|
||||||
|
"score_threshold": score_threshold,
|
||||||
|
"mode": search_mode,
|
||||||
|
}
|
||||||
|
# TODO: Add support for ranking_options.ranker
|
||||||
|
|
||||||
|
response = await self.query_chunks(
|
||||||
|
vector_db_id=vector_store_id,
|
||||||
|
query=search_query,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Convert response to OpenAI format
|
||||||
|
data = []
|
||||||
|
for i, (chunk, score) in enumerate(zip(response.chunks, response.scores, strict=False)):
|
||||||
|
# Apply score based filtering
|
||||||
|
if score < score_threshold:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Apply filters if provided
|
||||||
|
if filters:
|
||||||
|
# Simple metadata filtering
|
||||||
|
if not self._matches_filters(chunk.metadata, filters):
|
||||||
|
continue
|
||||||
|
|
||||||
|
chunk_data = {
|
||||||
|
"id": f"chunk_{i}",
|
||||||
|
"object": "vector_store.search_result",
|
||||||
|
"score": score,
|
||||||
|
"content": chunk.content.content if hasattr(chunk.content, "content") else str(chunk.content),
|
||||||
|
"metadata": chunk.metadata,
|
||||||
|
}
|
||||||
|
data.append(chunk_data)
|
||||||
|
if len(data) >= max_num_results:
|
||||||
|
break
|
||||||
|
|
||||||
|
return VectorStoreSearchResponse(
|
||||||
|
search_query=search_query,
|
||||||
|
data=data,
|
||||||
|
has_more=False, # For simplicity, we don't implement pagination here
|
||||||
|
next_page=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error searching vector store {vector_store_id}: {e}")
|
||||||
|
# Return empty results on error
|
||||||
|
return VectorStoreSearchResponse(
|
||||||
|
search_query=search_query,
|
||||||
|
data=[],
|
||||||
|
has_more=False,
|
||||||
|
next_page=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _matches_filters(self, metadata: dict[str, Any], filters: dict[str, Any]) -> bool:
|
||||||
|
"""Check if metadata matches the provided filters."""
|
||||||
|
for key, value in filters.items():
|
||||||
|
if key not in metadata:
|
||||||
|
return False
|
||||||
|
if metadata[key] != value:
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||||
|
|
|
||||||
|
|
@ -22,8 +22,10 @@ def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
|
||||||
|
|
||||||
vector_io_providers = [p for p in client_with_models.providers.list() if p.api == "vector_io"]
|
vector_io_providers = [p for p in client_with_models.providers.list() if p.api == "vector_io"]
|
||||||
for p in vector_io_providers:
|
for p in vector_io_providers:
|
||||||
if p.provider_type not in ["inline::faiss"]:
|
if p.provider_type in ["inline::faiss", "inline::sqlite-vec"]:
|
||||||
pytest.skip(f"OpenAI vector stores are not supported by {p.provider_type}")
|
return
|
||||||
|
|
||||||
|
pytest.skip("OpenAI vector stores are not supported by any provider")
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue