Merge branch 'main' into eval_task_register

This commit is contained in:
Xi Yan 2024-11-06 15:05:46 -08:00
commit 1b7e19d5d0
201 changed files with 1635 additions and 807 deletions

View file

@ -39,7 +39,7 @@ class RunShieldResponse(BaseModel):
class ShieldStore(Protocol):
def get_shield(self, identifier: str) -> ShieldDef: ...
async def get_shield(self, identifier: str) -> ShieldDef: ...
@runtime_checkable
@ -48,5 +48,5 @@ class Safety(Protocol):
@webmethod(route="/safety/run_shield")
async def run_shield(
self, shield_type: str, messages: List[Message], params: Dict[str, Any] = None
self, identifier: str, messages: List[Message], params: Dict[str, Any] = None
) -> RunShieldResponse: ...

View file

@ -46,7 +46,7 @@ class Shields(Protocol):
async def list_shields(self) -> List[ShieldDefWithProvider]: ...
@webmethod(route="/shields/get", method="GET")
async def get_shield(self, shield_type: str) -> Optional[ShieldDefWithProvider]: ...
async def get_shield(self, identifier: str) -> Optional[ShieldDefWithProvider]: ...
@webmethod(route="/shields/register", method="POST")
async def register_shield(self, shield: ShieldDefWithProvider) -> None: ...

View file

@ -12,6 +12,10 @@ import os
from functools import lru_cache
from pathlib import Path
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.utils.dynamic import instantiate_class_type
TEMPLATES_PATH = Path(os.path.relpath(__file__)).parent.parent.parent / "templates"
@ -176,6 +180,66 @@ class StackBuild(Subcommand):
return
self._run_stack_build_command_from_build_config(build_config)
def _generate_run_config(self, build_config: BuildConfig, build_dir: Path) -> None:
"""
Generate a run.yaml template file for user to edit from a build.yaml file
"""
import json
import yaml
from termcolor import cprint
from llama_stack.distribution.build import ImageType
apis = list(build_config.distribution_spec.providers.keys())
run_config = StackRunConfig(
built_at=datetime.now(),
docker_image=(
build_config.name
if build_config.image_type == ImageType.docker.value
else None
),
image_name=build_config.name,
conda_env=(
build_config.name
if build_config.image_type == ImageType.conda.value
else None
),
apis=apis,
providers={},
)
# build providers dict
provider_registry = get_provider_registry()
for api in apis:
run_config.providers[api] = []
provider_types = build_config.distribution_spec.providers[api]
if isinstance(provider_types, str):
provider_types = [provider_types]
for i, provider_type in enumerate(provider_types):
p_spec = Provider(
provider_id=f"{provider_type}-{i}",
provider_type=provider_type,
config={},
)
config_type = instantiate_class_type(
provider_registry[Api(api)][provider_type].config_class
)
p_spec.config = config_type()
run_config.providers[api].append(p_spec)
os.makedirs(build_dir, exist_ok=True)
run_config_file = build_dir / f"{build_config.name}-run.yaml"
with open(run_config_file, "w") as f:
to_write = json.loads(run_config.model_dump_json())
f.write(yaml.dump(to_write, sort_keys=False))
cprint(
f"You can now edit {run_config_file} and run `llama stack run {run_config_file}`",
color="green",
)
def _run_stack_build_command_from_build_config(
self, build_config: BuildConfig
) -> None:
@ -183,48 +247,24 @@ class StackBuild(Subcommand):
import os
import yaml
from termcolor import cprint
from llama_stack.distribution.build import build_image, ImageType
from llama_stack.distribution.build import build_image
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.distribution.utils.serialize import EnumEncoder
# save build.yaml spec for building same distribution again
if build_config.image_type == ImageType.docker.value:
# docker needs build file to be in the llama-stack repo dir to be able to copy over to the image
llama_stack_path = Path(
os.path.abspath(__file__)
).parent.parent.parent.parent
build_dir = llama_stack_path / "tmp/configs/"
else:
build_dir = DISTRIBS_BASE_DIR / f"llamastack-{build_config.name}"
build_dir = DISTRIBS_BASE_DIR / f"llamastack-{build_config.name}"
os.makedirs(build_dir, exist_ok=True)
build_file_path = build_dir / f"{build_config.name}-build.yaml"
with open(build_file_path, "w") as f:
to_write = json.loads(json.dumps(build_config.dict(), cls=EnumEncoder))
to_write = json.loads(build_config.model_dump_json())
f.write(yaml.dump(to_write, sort_keys=False))
return_code = build_image(build_config, build_file_path)
if return_code != 0:
return
configure_name = (
build_config.name
if build_config.image_type == "conda"
else (f"llamastack-{build_config.name}")
)
if build_config.image_type == "conda":
cprint(
f"You can now run `llama stack configure {configure_name}`",
color="green",
)
else:
cprint(
f"You can now edit your run.yaml file and run `docker run -it -p 5000:5000 {build_config.name}`. See full command in llama-stack/distributions/",
color="green",
)
self._generate_run_config(build_config, build_dir)
def _run_template_list_cmd(self, args: argparse.Namespace) -> None:
import json

View file

@ -7,8 +7,6 @@
import argparse
from llama_stack.cli.subcommand import Subcommand
from llama_stack.distribution.utils.config_dirs import BUILDS_BASE_DIR
from llama_stack.distribution.datatypes import * # noqa: F403
class StackConfigure(Subcommand):
@ -39,123 +37,10 @@ class StackConfigure(Subcommand):
)
def _run_stack_configure_cmd(self, args: argparse.Namespace) -> None:
import json
import os
import subprocess
from pathlib import Path
import pkg_resources
import yaml
from termcolor import cprint
from llama_stack.distribution.build import ImageType
from llama_stack.distribution.utils.exec import run_with_pty
docker_image = None
build_config_file = Path(args.config)
if build_config_file.exists():
with open(build_config_file, "r") as f:
build_config = BuildConfig(**yaml.safe_load(f))
self._configure_llama_distribution(build_config, args.output_dir)
return
conda_dir = (
Path(os.path.expanduser("~/.conda/envs")) / f"llamastack-{args.config}"
)
output = subprocess.check_output(["bash", "-c", "conda info --json"])
conda_envs = json.loads(output.decode("utf-8"))["envs"]
for x in conda_envs:
if x.endswith(f"/llamastack-{args.config}"):
conda_dir = Path(x)
break
build_config_file = Path(conda_dir) / f"{args.config}-build.yaml"
if build_config_file.exists():
with open(build_config_file, "r") as f:
build_config = BuildConfig(**yaml.safe_load(f))
cprint(f"Using {build_config_file}...", "green")
self._configure_llama_distribution(build_config, args.output_dir)
return
docker_image = args.config
builds_dir = BUILDS_BASE_DIR / ImageType.docker.value
if args.output_dir:
builds_dir = Path(output_dir)
os.makedirs(builds_dir, exist_ok=True)
script = pkg_resources.resource_filename(
"llama_stack", "distribution/configure_container.sh"
)
script_args = [script, docker_image, str(builds_dir)]
return_code = run_with_pty(script_args)
if return_code != 0:
self.parser.error(
f"Failed to configure container {docker_image} with return code {return_code}. Please run `llama stack build` first. "
)
def _configure_llama_distribution(
self,
build_config: BuildConfig,
output_dir: Optional[str] = None,
):
import json
import os
from pathlib import Path
import yaml
from termcolor import cprint
from llama_stack.distribution.configure import (
configure_api_providers,
parse_and_maybe_upgrade_config,
)
from llama_stack.distribution.utils.serialize import EnumEncoder
builds_dir = BUILDS_BASE_DIR / build_config.image_type
if output_dir:
builds_dir = Path(output_dir)
os.makedirs(builds_dir, exist_ok=True)
image_name = build_config.name.replace("::", "-")
run_config_file = builds_dir / f"{image_name}-run.yaml"
if run_config_file.exists():
cprint(
f"Configuration already exists at `{str(run_config_file)}`. Will overwrite...",
"yellow",
attrs=["bold"],
)
config_dict = yaml.safe_load(run_config_file.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
else:
config = StackRunConfig(
built_at=datetime.now(),
image_name=image_name,
apis=list(build_config.distribution_spec.providers.keys()),
providers={},
)
config = configure_api_providers(config, build_config.distribution_spec)
config.docker_image = (
image_name if build_config.image_type == "docker" else None
)
config.conda_env = image_name if build_config.image_type == "conda" else None
with open(run_config_file, "w") as f:
to_write = json.loads(json.dumps(config.dict(), cls=EnumEncoder))
f.write(yaml.dump(to_write, sort_keys=False))
cprint(
f"> YAML configuration has been written to `{run_config_file}`.",
color="blue",
)
cprint(
f"You can now run `llama stack run {image_name} --port PORT`",
color="green",
self.parser.error(
"""
DEPRECATED! llama stack configure has been deprecated.
Please use llama stack run --config <path/to/run.yaml> instead.
Please see example run.yaml in /distributions folder.
"""
)

View file

@ -45,7 +45,6 @@ class StackRun(Subcommand):
import pkg_resources
import yaml
from termcolor import cprint
from llama_stack.distribution.build import ImageType
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
@ -71,14 +70,12 @@ class StackRun(Subcommand):
if not config_file.exists():
self.parser.error(
f"File {str(config_file)} does not exist. Please run `llama stack build` and `llama stack configure <name>` to generate a run.yaml file"
f"File {str(config_file)} does not exist. Please run `llama stack build` to generate (and optionally edit) a run.yaml file"
)
return
cprint(f"Using config `{config_file}`", "green")
with open(config_file, "r") as f:
config_dict = yaml.safe_load(config_file.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
config_dict = yaml.safe_load(config_file.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
if config.docker_image:
script = pkg_resources.resource_filename(

View file

@ -36,7 +36,6 @@ SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
REPO_DIR=$(dirname $(dirname "$SCRIPT_DIR"))
DOCKER_BINARY=${DOCKER_BINARY:-docker}
DOCKER_OPTS=${DOCKER_OPTS:-}
REPO_CONFIGS_DIR="$REPO_DIR/tmp/configs"
TEMP_DIR=$(mktemp -d)
@ -115,8 +114,6 @@ ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server"]
EOF
add_to_docker "ADD tmp/configs/$(basename "$build_file_path") ./llamastack-build.yaml"
printf "Dockerfile created successfully in $TEMP_DIR/Dockerfile"
cat $TEMP_DIR/Dockerfile
printf "\n"
@ -138,7 +135,6 @@ set -x
$DOCKER_BINARY build $DOCKER_OPTS -t $image_name -f "$TEMP_DIR/Dockerfile" "$REPO_DIR" $mounts
# clean up tmp/configs
rm -rf $REPO_CONFIGS_DIR
set +x
echo "Success!"

View file

@ -154,12 +154,12 @@ class SafetyRouter(Safety):
async def run_shield(
self,
shield_type: str,
identifier: str,
messages: List[Message],
params: Dict[str, Any] = None,
) -> RunShieldResponse:
return await self.routing_table.get_provider_impl(shield_type).run_shield(
shield_type=shield_type,
return await self.routing_table.get_provider_impl(identifier).run_shield(
identifier=identifier,
messages=messages,
params=params,
)

View file

@ -182,6 +182,12 @@ class CommonRoutingTableImpl(RoutingTable):
objs = await self.dist_registry.get_all()
return [obj for obj in objs if obj.type == type]
async def get_all_with_types(
self, types: List[str]
) -> List[RoutableObjectWithProvider]:
objs = await self.dist_registry.get_all()
return [obj for obj in objs if obj.type in types]
class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def list_models(self) -> List[ModelDefWithProvider]:
@ -198,8 +204,8 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def list_shields(self) -> List[ShieldDef]:
return await self.get_all_with_type("shield")
async def get_shield(self, shield_type: str) -> Optional[ShieldDefWithProvider]:
return await self.get_object_by_identifier(shield_type)
async def get_shield(self, identifier: str) -> Optional[ShieldDefWithProvider]:
return await self.get_object_by_identifier(identifier)
async def register_shield(self, shield: ShieldDefWithProvider) -> None:
await self.register_object(shield)
@ -207,7 +213,14 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
class MemoryBanksRoutingTable(CommonRoutingTableImpl, MemoryBanks):
async def list_memory_banks(self) -> List[MemoryBankDefWithProvider]:
return await self.get_all_with_type("memory_bank")
return await self.get_all_with_types(
[
MemoryBankType.vector.value,
MemoryBankType.keyvalue.value,
MemoryBankType.keyword.value,
MemoryBankType.graph.value,
]
)
async def get_memory_bank(
self, identifier: str

View file

@ -209,7 +209,8 @@ async def maybe_await(value):
async def sse_generator(event_gen):
try:
async for item in await event_gen:
event_gen = await event_gen
async for item in event_gen:
yield create_sse_event(item)
await asyncio.sleep(0.01)
except asyncio.CancelledError:
@ -229,7 +230,6 @@ async def sse_generator(event_gen):
def create_dynamic_typed_route(func: Any, method: str):
async def endpoint(request: Request, **kwargs):
await start_trace(func.__name__)

View file

@ -1,16 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel, Field
class BedrockSafetyConfig(BaseModel):
"""Configuration information for a guardrail that you want to use in the request."""
aws_profile: str = Field(
default="default",
description="The profile on the machine having valid aws credentials. This will ensure separation of creation to invocation",
)

View file

@ -145,11 +145,12 @@ Fully-qualified name of the module to import. The module is expected to have:
class RemoteProviderConfig(BaseModel):
host: str = "localhost"
port: int
port: int = 0
protocol: str = "http"
@property
def url(self) -> str:
return f"http://{self.host}:{self.port}"
return f"{self.protocol}://{self.host}:{self.port}"
@json_schema_type

View file

@ -16,7 +16,7 @@ from llama_stack.apis.datasets import * # noqa: F403
from autoevals.llm import Factuality
from autoevals.ragas import AnswerCorrectness
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.common import (
aggregate_average,
)

View file

@ -4,10 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore import KVStoreConfig
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
class MetaReferenceAgentsImplConfig(BaseModel):
persistence_store: KVStoreConfig
persistence_store: KVStoreConfig = Field(default=SqliteKVStoreConfig())

View file

@ -32,18 +32,18 @@ class ShieldRunnerMixin:
self.output_shields = output_shields
async def run_multiple_shields(
self, messages: List[Message], shield_types: List[str]
self, messages: List[Message], identifiers: List[str]
) -> None:
responses = await asyncio.gather(
*[
self.safety_api.run_shield(
shield_type=shield_type,
identifier=identifier,
messages=messages,
)
for shield_type in shield_types
for identifier in identifiers
]
)
for shield_type, response in zip(shield_types, responses):
for identifier, response in zip(identifiers, responses):
if not response.violation:
continue
@ -52,6 +52,6 @@ class ShieldRunnerMixin:
raise SafetyException(violation)
elif violation.violation_level == ViolationLevel.WARN:
cprint(
f"[Warn]{shield_type} raised a warning",
f"[Warn]{identifier} raised a warning",
color="red",
)

View file

@ -9,7 +9,7 @@ from typing import List
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.providers.impls.meta_reference.agents.safety import ShieldRunnerMixin
from llama_stack.providers.inline.meta_reference.agents.safety import ShieldRunnerMixin
from .builtin import BaseTool

View file

@ -14,6 +14,11 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_media_to_url,
request_has_media,
)
from .config import MetaReferenceInferenceConfig
from .generation import Llama
from .model_parallel import LlamaModelParallelGenerator
@ -87,6 +92,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
logprobs=logprobs,
)
self.check_model(request)
request = await request_with_localized_media(request)
if request.stream:
return self._stream_completion(request)
@ -211,6 +217,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
logprobs=logprobs,
)
self.check_model(request)
request = await request_with_localized_media(request)
if self.config.create_distributed_process_group:
if SEMAPHORE.locked():
@ -388,3 +395,31 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
async def request_with_localized_media(
request: Union[ChatCompletionRequest, CompletionRequest],
) -> Union[ChatCompletionRequest, CompletionRequest]:
if not request_has_media(request):
return request
async def _convert_single_content(content):
if isinstance(content, ImageMedia):
url = await convert_image_media_to_url(content, download=True)
return ImageMedia(image=URL(uri=url))
else:
return content
async def _convert_content(content):
if isinstance(content, list):
return [await _convert_single_content(c) for c in content]
else:
return await _convert_single_content(content)
if isinstance(request, ChatCompletionRequest):
for m in request.messages:
m.content = await _convert_content(m.content)
else:
request.content = await _convert_content(request.content)
return request

View file

@ -27,7 +27,7 @@ from torchao.quantization.GPTQ import Int8DynActInt4WeightLinear
from llama_stack.apis.inference import QuantizationType
from llama_stack.providers.impls.meta_reference.inference.config import (
from llama_stack.providers.inline.meta_reference.inference.config import (
MetaReferenceQuantizedInferenceConfig,
)

View file

@ -0,0 +1,21 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
@json_schema_type
class FaissImplConfig(BaseModel):
kvstore: KVStoreConfig = SqliteKVStoreConfig(
db_path=(RUNTIME_BASE_DIR / "faiss_store.db").as_posix()
) # Uses SQLite config specific to FAISS storage

View file

@ -16,6 +16,7 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.memory.vector_store import (
ALL_MINILM_L6_V2_DIMENSION,
@ -28,6 +29,8 @@ from .config import FaissImplConfig
logger = logging.getLogger(__name__)
MEMORY_BANKS_PREFIX = "memory_banks:"
class FaissIndex(EmbeddingIndex):
id_by_index: Dict[int, str]
@ -69,10 +72,25 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: FaissImplConfig) -> None:
self.config = config
self.cache = {}
self.kvstore = None
async def initialize(self) -> None: ...
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing banks from kvstore
start_key = MEMORY_BANKS_PREFIX
end_key = f"{MEMORY_BANKS_PREFIX}\xff"
stored_banks = await self.kvstore.range(start_key, end_key)
async def shutdown(self) -> None: ...
for bank_data in stored_banks:
bank = VectorMemoryBankDef.model_validate_json(bank_data)
index = BankWithIndex(
bank=bank, index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION)
)
self.cache[bank.identifier] = index
async def shutdown(self) -> None:
# Cleanup if needed
pass
async def register_memory_bank(
self,
@ -82,6 +100,14 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
memory_bank.type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.type}"
# Store in kvstore
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
await self.kvstore.set(
key=key,
value=memory_bank.json(),
)
# Store in cache
index = BankWithIndex(
bank=memory_bank, index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION)
)

View file

@ -0,0 +1,73 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import tempfile
import pytest
from llama_stack.apis.memory import MemoryBankType, VectorMemoryBankDef
from llama_stack.providers.inline.meta_reference.memory.config import FaissImplConfig
from llama_stack.providers.inline.meta_reference.memory.faiss import FaissMemoryImpl
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
class TestFaissMemoryImpl:
@pytest.fixture
def faiss_impl(self):
# Create a temporary SQLite database file
temp_db = tempfile.NamedTemporaryFile(suffix=".db", delete=False)
config = FaissImplConfig(kvstore=SqliteKVStoreConfig(db_path=temp_db.name))
return FaissMemoryImpl(config)
@pytest.mark.asyncio
async def test_initialize(self, faiss_impl):
# Test empty initialization
await faiss_impl.initialize()
assert len(faiss_impl.cache) == 0
# Test initialization with existing banks
bank = VectorMemoryBankDef(
identifier="test_bank",
type=MemoryBankType.vector.value,
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
# Register a bank and reinitialize to test loading
await faiss_impl.register_memory_bank(bank)
# Create new instance to test initialization with existing data
new_impl = FaissMemoryImpl(faiss_impl.config)
await new_impl.initialize()
assert len(new_impl.cache) == 1
assert "test_bank" in new_impl.cache
@pytest.mark.asyncio
async def test_register_memory_bank(self, faiss_impl):
bank = VectorMemoryBankDef(
identifier="test_bank",
type=MemoryBankType.vector.value,
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
await faiss_impl.initialize()
await faiss_impl.register_memory_bank(bank)
assert "test_bank" in faiss_impl.cache
assert faiss_impl.cache["test_bank"].bank == bank
# Verify persistence
new_impl = FaissMemoryImpl(faiss_impl.config)
await new_impl.initialize()
assert "test_bank" in new_impl.cache
if __name__ == "__main__":
pytest.main([__file__])

View file

@ -13,15 +13,15 @@ from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.inference.inference import Inference
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.equality_scoring_fn import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.equality_scoring_fn import (
EqualityScoringFn,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.llm_as_judge_scoring_fn import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.llm_as_judge_scoring_fn import (
LlmAsJudgeScoringFn,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.subset_of_scoring_fn import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.subset_of_scoring_fn import (
SubsetOfScoringFn,
)

View file

@ -4,18 +4,18 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.base_scoring_fn import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.base_scoring_fn import (
BaseScoringFn,
)
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.common import (
aggregate_accuracy,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.equality import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.fn_defs.equality import (
equality,
)

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference.inference import Inference
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.base_scoring_fn import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.base_scoring_fn import (
BaseScoringFn,
)
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
@ -12,10 +12,10 @@ from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
import re
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.common import (
aggregate_average,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.llm_as_judge_8b_correctness import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.fn_defs.llm_as_judge_8b_correctness import (
llm_as_judge_8b_correctness,
)

View file

@ -4,17 +4,17 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.base_scoring_fn import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.base_scoring_fn import (
BaseScoringFn,
)
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.common import (
aggregate_accuracy,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.subset_of import (
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.fn_defs.subset_of import (
subset_of,
)

Some files were not shown because too many files have changed in this diff Show more