mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
feat: Add watsonx inference adapter (#1895)
# What does this PR do? IBM watsonx ai added as the inference [#1741 ](https://github.com/meta-llama/llama-stack/issues/1741) [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) --------- Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
This commit is contained in:
parent
29072f40ab
commit
1bb1d9b2ba
14 changed files with 922 additions and 0 deletions
|
@ -288,4 +288,14 @@ def available_providers() -> List[ProviderSpec]:
|
|||
provider_data_validator="llama_stack.providers.remote.inference.passthrough.PassthroughProviderDataValidator",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="watsonx",
|
||||
pip_packages=["ibm_watson_machine_learning"],
|
||||
module="llama_stack.providers.remote.inference.watsonx",
|
||||
config_class="llama_stack.providers.remote.inference.watsonx.WatsonXConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.watsonx.WatsonXProviderDataValidator",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
22
llama_stack/providers/remote/inference/watsonx/__init__.py
Normal file
22
llama_stack/providers/remote/inference/watsonx/__init__.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
||||
from .config import WatsonXConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: WatsonXConfig, _deps) -> Inference:
|
||||
# import dynamically so `llama stack build` does not fail due to missing dependencies
|
||||
from .watsonx import WatsonXInferenceAdapter
|
||||
|
||||
if not isinstance(config, WatsonXConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
adapter = WatsonXInferenceAdapter(config)
|
||||
return adapter
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "WatsonXConfig"]
|
46
llama_stack/providers/remote/inference/watsonx/config.py
Normal file
46
llama_stack/providers/remote/inference/watsonx/config.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class WatsonXProviderDataValidator(BaseModel):
|
||||
url: str
|
||||
api_key: str
|
||||
project_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class WatsonXConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_BASE_URL", "https://us-south.ml.cloud.ibm.com"),
|
||||
description="A base url for accessing the watsonx.ai",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_API_KEY"),
|
||||
description="The watsonx API key, only needed of using the hosted service",
|
||||
)
|
||||
project_id: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_PROJECT_ID"),
|
||||
description="The Project ID key, only needed of using the hosted service",
|
||||
)
|
||||
timeout: int = Field(
|
||||
default=60,
|
||||
description="Timeout for the HTTP requests",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "${env.WATSONX_BASE_URL:https://us-south.ml.cloud.ibm.com}",
|
||||
"api_key": "${env.WATSONX_API_KEY:}",
|
||||
"project_id": "${env.WATSONX_PROJECT_ID:}",
|
||||
}
|
47
llama_stack/providers/remote/inference/watsonx/models.py
Normal file
47
llama_stack/providers/remote/inference/watsonx/models.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import build_hf_repo_model_entry
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-3-70b-instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-2-13b-chat",
|
||||
CoreModelId.llama2_13b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-1-70b-instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-11b-vision-instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-3b-instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-guard-3-11b-vision",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
]
|
260
llama_stack/providers/remote/inference/watsonx/watsonx.py
Normal file
260
llama_stack/providers/remote/inference/watsonx/watsonx.py
Normal file
|
@ -0,0 +1,260 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
|
||||
from ibm_watson_machine_learning.foundation_models import Model
|
||||
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from . import WatsonXConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
def __init__(self, config: WatsonXConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
|
||||
print(f"Initializing watsonx InferenceAdapter({config.url})...")
|
||||
|
||||
self._config = config
|
||||
|
||||
self._project_id = self._config.project_id
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_client(self, model_id) -> Model:
|
||||
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
|
||||
config_url = self._config.url
|
||||
project_id = self._config.project_id
|
||||
credentials = {"url": config_url, "apikey": config_api_key}
|
||||
|
||||
return Model(model_id=model_id, credentials=credentials, project_id=project_id)
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_completion_response(response)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = self._get_client(request.model).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
model_id = request.model
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
s = self._get_client(model_id).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
input_dict = {"params": {}}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
else:
|
||||
assert not media_present, "Together does not support media for Completion requests"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
if request.sampling_params:
|
||||
if request.sampling_params.strategy:
|
||||
input_dict["params"][GenParams.DECODING_METHOD] = request.sampling_params.strategy.type
|
||||
if request.sampling_params.max_tokens:
|
||||
input_dict["params"][GenParams.MAX_NEW_TOKENS] = request.sampling_params.max_tokens
|
||||
if request.sampling_params.repetition_penalty:
|
||||
input_dict["params"][GenParams.REPETITION_PENALTY] = request.sampling_params.repetition_penalty
|
||||
if request.sampling_params.additional_params.get("top_p"):
|
||||
input_dict["params"][GenParams.TOP_P] = request.sampling_params.additional_params["top_p"]
|
||||
if request.sampling_params.additional_params.get("top_k"):
|
||||
input_dict["params"][GenParams.TOP_K] = request.sampling_params.additional_params["top_k"]
|
||||
if request.sampling_params.additional_params.get("temperature"):
|
||||
input_dict["params"][GenParams.TEMPERATURE] = request.sampling_params.additional_params["temperature"]
|
||||
if request.sampling_params.additional_params.get("length_penalty"):
|
||||
input_dict["params"][GenParams.LENGTH_PENALTY] = request.sampling_params.additional_params[
|
||||
"length_penalty"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("random_seed"):
|
||||
input_dict["params"][GenParams.RANDOM_SEED] = request.sampling_params.additional_params["random_seed"]
|
||||
if request.sampling_params.additional_params.get("min_new_tokens"):
|
||||
input_dict["params"][GenParams.MIN_NEW_TOKENS] = request.sampling_params.additional_params[
|
||||
"min_new_tokens"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("stop_sequences"):
|
||||
input_dict["params"][GenParams.STOP_SEQUENCES] = request.sampling_params.additional_params[
|
||||
"stop_sequences"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("time_limit"):
|
||||
input_dict["params"][GenParams.TIME_LIMIT] = request.sampling_params.additional_params["time_limit"]
|
||||
if request.sampling_params.additional_params.get("truncate_input_tokens"):
|
||||
input_dict["params"][GenParams.TRUNCATE_INPUT_TOKENS] = request.sampling_params.additional_params[
|
||||
"truncate_input_tokens"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("return_options"):
|
||||
input_dict["params"][GenParams.RETURN_OPTIONS] = request.sampling_params.additional_params[
|
||||
"return_options"
|
||||
]
|
||||
|
||||
params = {
|
||||
**input_dict,
|
||||
}
|
||||
return params
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
) -> EmbeddingsResponse:
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue