feat: enable DPO training with HuggingFace inline provider

This commit is contained in:
Ubuntu 2025-07-23 15:39:36 +00:00
parent 874b1cb00f
commit 1c7be17113
7 changed files with 813 additions and 101 deletions

View file

@ -13,6 +13,9 @@ import pytest
from llama_stack.apis.post_training import (
DataConfig,
DatasetFormat,
DPOAlignmentConfig,
DPOLossType,
LoraFinetuningConfig,
TrainingConfig,
)
@ -81,7 +84,7 @@ class TestPostTraining:
dataset_id=dataset.identifier,
batch_size=1,
shuffle=False,
data_format="instruct",
data_format=DatasetFormat.instruct,
)
# setup training config with minimal settings
@ -122,6 +125,8 @@ class TestPostTraining:
artifacts = llama_stack_client.post_training.job.artifacts(job_uuid=job_uuid)
logger.info(f"Job artifacts: {artifacts}")
logger.info(f"Registered dataset with ID: {dataset.identifier}")
# TODO: Fix these tests to properly represent the Jobs API in training
#
# async def test_get_training_jobs(self, post_training_stack):
@ -149,3 +154,77 @@ class TestPostTraining:
# assert job_artifacts.checkpoints[0].identifier == "instructlab/granite-7b-lab"
# assert job_artifacts.checkpoints[0].epoch == 0
# assert "/.llama/checkpoints/Llama3.2-3B-Instruct-sft-0" in job_artifacts.checkpoints[0].path
@pytest.mark.integration
@pytest.mark.parametrize(
"purpose, source",
[
(
"post-training/messages",
{
"type": "uri",
"uri": "huggingface://datasets/trl-internal-testing/hh-rlhf-helpful-base-trl-style?split=train[:20]",
},
),
],
)
@pytest.mark.timeout(360)
def test_preference_optimize(self, llama_stack_client, purpose, source):
logger.info("Starting DPO preference optimization test")
# register preference dataset to train
dataset = llama_stack_client.datasets.register(
purpose=purpose,
source=source,
)
logger.info(f"Registered preference dataset with ID: {dataset.identifier}")
# DPO algorithm configuration
algorithm_config = DPOAlignmentConfig(
beta=0.1,
loss_type=DPOLossType.sigmoid,
)
data_config = DataConfig(
dataset_id=dataset.identifier,
batch_size=1,
shuffle=False,
data_format=DatasetFormat.dialog, # DPO datasets often use dialog format
)
# setup training config with minimal settings for DPO
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
max_steps_per_epoch=1, # Just 2 steps for quick testing
gradient_accumulation_steps=1,
)
job_uuid = f"test-dpo-job-{uuid.uuid4()}"
logger.info(f"Starting DPO training job with UUID: {job_uuid}")
# train with HuggingFace DPO implementation
_ = llama_stack_client.post_training.preference_optimize(
job_uuid=job_uuid,
finetuned_model="distilgpt2", # Much smaller model for faster CI testing
algorithm_config=algorithm_config,
training_config=training_config,
hyperparam_search_config={},
logger_config={},
)
while True:
status = llama_stack_client.post_training.job.status(job_uuid=job_uuid)
if not status:
logger.error("DPO job not found")
break
logger.info(f"Current DPO status: {status}")
if status.status == "completed":
break
logger.info("Waiting for DPO job to complete...")
time.sleep(10) # Increased sleep time to reduce polling frequency
artifacts = llama_stack_client.post_training.job.artifacts(job_uuid=job_uuid)
logger.info(f"DPO job artifacts: {artifacts}")