mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-09 13:14:39 +00:00
refactor: switch to the new default nomic-embed-text-v1.5 embedding model in LS
This commit is contained in:
parent
f1748e2f92
commit
1d0f0a0d8e
63 changed files with 16170 additions and 186 deletions
|
@ -86,7 +86,7 @@ class SentenceTransformerEmbeddingMixin:
|
|||
def _load_model():
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
return SentenceTransformer(model)
|
||||
return SentenceTransformer(model, trust_remote_code=True)
|
||||
|
||||
loaded_model = await asyncio.to_thread(_load_model)
|
||||
EMBEDDING_MODELS[model] = loaded_model
|
||||
|
|
|
@ -203,7 +203,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
embedding_dimension: int | None = 768,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
|
@ -218,7 +218,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
if embedding_model is None:
|
||||
raise ValueError("Embedding model is required")
|
||||
|
||||
# Embedding dimension is required (defaulted to 384 if not provided)
|
||||
# Embedding dimension is required (defaulted to 768 if not provided)
|
||||
if embedding_dimension is None:
|
||||
raise ValueError("Embedding dimension is required")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue