mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
add completion() for ollama (#280)
This commit is contained in:
parent
e2a5a2e10d
commit
1d241bf3fe
5 changed files with 138 additions and 15 deletions
|
@ -23,9 +23,12 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
||||||
OpenAICompatCompletionResponse,
|
OpenAICompatCompletionResponse,
|
||||||
process_chat_completion_response,
|
process_chat_completion_response,
|
||||||
process_chat_completion_stream_response,
|
process_chat_completion_stream_response,
|
||||||
|
process_completion_response,
|
||||||
|
process_completion_stream_response,
|
||||||
)
|
)
|
||||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||||
chat_completion_request_to_prompt,
|
chat_completion_request_to_prompt,
|
||||||
|
completion_request_to_prompt,
|
||||||
)
|
)
|
||||||
|
|
||||||
OLLAMA_SUPPORTED_MODELS = {
|
OLLAMA_SUPPORTED_MODELS = {
|
||||||
|
@ -93,7 +96,64 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
stream: Optional[bool] = False,
|
stream: Optional[bool] = False,
|
||||||
logprobs: Optional[LogProbConfig] = None,
|
logprobs: Optional[LogProbConfig] = None,
|
||||||
) -> AsyncGenerator:
|
) -> AsyncGenerator:
|
||||||
raise NotImplementedError()
|
request = CompletionRequest(
|
||||||
|
model=model,
|
||||||
|
content=content,
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
stream=stream,
|
||||||
|
logprobs=logprobs,
|
||||||
|
)
|
||||||
|
if stream:
|
||||||
|
return self._stream_completion(request)
|
||||||
|
else:
|
||||||
|
return await self._nonstream_completion(request)
|
||||||
|
|
||||||
|
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
||||||
|
sampling_options = get_sampling_options(request)
|
||||||
|
# This is needed since the Ollama API expects num_predict to be set
|
||||||
|
# for early truncation instead of max_tokens.
|
||||||
|
if sampling_options["max_tokens"] is not None:
|
||||||
|
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||||
|
return {
|
||||||
|
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
||||||
|
"prompt": completion_request_to_prompt(request, self.formatter),
|
||||||
|
"options": sampling_options,
|
||||||
|
"raw": True,
|
||||||
|
"stream": request.stream,
|
||||||
|
}
|
||||||
|
|
||||||
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
|
params = self._get_params_for_completion(request)
|
||||||
|
|
||||||
|
async def _generate_and_convert_to_openai_compat():
|
||||||
|
s = await self.client.generate(**params)
|
||||||
|
async for chunk in s:
|
||||||
|
choice = OpenAICompatCompletionChoice(
|
||||||
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||||
|
text=chunk["response"],
|
||||||
|
)
|
||||||
|
yield OpenAICompatCompletionResponse(
|
||||||
|
choices=[choice],
|
||||||
|
)
|
||||||
|
|
||||||
|
stream = _generate_and_convert_to_openai_compat()
|
||||||
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
|
params = self._get_params_for_completion(request)
|
||||||
|
r = await self.client.generate(**params)
|
||||||
|
assert isinstance(r, dict)
|
||||||
|
|
||||||
|
choice = OpenAICompatCompletionChoice(
|
||||||
|
finish_reason=r["done_reason"] if r["done"] else None,
|
||||||
|
text=r["response"],
|
||||||
|
)
|
||||||
|
response = OpenAICompatCompletionResponse(
|
||||||
|
choices=[choice],
|
||||||
|
)
|
||||||
|
|
||||||
|
return process_completion_response(response, self.formatter)
|
||||||
|
|
||||||
async def chat_completion(
|
async def chat_completion(
|
||||||
self,
|
self,
|
||||||
|
|
|
@ -4,6 +4,10 @@ providers:
|
||||||
config:
|
config:
|
||||||
host: localhost
|
host: localhost
|
||||||
port: 11434
|
port: 11434
|
||||||
|
- provider_id: meta-reference
|
||||||
|
provider_type: meta-reference
|
||||||
|
config:
|
||||||
|
model: Llama3.2-1B-Instruct
|
||||||
- provider_id: test-tgi
|
- provider_id: test-tgi
|
||||||
provider_type: remote::tgi
|
provider_type: remote::tgi
|
||||||
config:
|
config:
|
||||||
|
|
|
@ -132,7 +132,10 @@ async def test_completion(inference_settings):
|
||||||
params = inference_settings["common_params"]
|
params = inference_settings["common_params"]
|
||||||
|
|
||||||
provider = inference_impl.routing_table.get_provider_impl(params["model"])
|
provider = inference_impl.routing_table.get_provider_impl(params["model"])
|
||||||
if provider.__provider_id__ != "meta-reference":
|
if provider.__provider_spec__.provider_type not in (
|
||||||
|
"meta-reference",
|
||||||
|
"remote::ollama",
|
||||||
|
):
|
||||||
pytest.skip("Other inference providers don't support completion() yet")
|
pytest.skip("Other inference providers don't support completion() yet")
|
||||||
|
|
||||||
response = await inference_impl.completion(
|
response = await inference_impl.completion(
|
||||||
|
|
|
@ -34,6 +34,8 @@ def get_sampling_options(request: ChatCompletionRequest) -> dict:
|
||||||
if params := request.sampling_params:
|
if params := request.sampling_params:
|
||||||
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||||
if getattr(params, attr):
|
if getattr(params, attr):
|
||||||
|
if attr == "max_tokens":
|
||||||
|
options["num_predict"] = getattr(params, attr)
|
||||||
options[attr] = getattr(params, attr)
|
options[attr] = getattr(params, attr)
|
||||||
|
|
||||||
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
|
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
|
||||||
|
@ -49,25 +51,35 @@ def text_from_choice(choice) -> str:
|
||||||
return choice.text
|
return choice.text
|
||||||
|
|
||||||
|
|
||||||
|
def get_stop_reason(finish_reason: str) -> StopReason:
|
||||||
|
if finish_reason in ["stop", "eos"]:
|
||||||
|
return StopReason.end_of_turn
|
||||||
|
elif finish_reason == "eom":
|
||||||
|
return StopReason.end_of_message
|
||||||
|
elif finish_reason == "length":
|
||||||
|
return StopReason.out_of_tokens
|
||||||
|
|
||||||
|
return StopReason.out_of_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def process_completion_response(
|
||||||
|
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
||||||
|
) -> CompletionResponse:
|
||||||
|
choice = response.choices[0]
|
||||||
|
|
||||||
|
return CompletionResponse(
|
||||||
|
stop_reason=get_stop_reason(choice.finish_reason),
|
||||||
|
content=choice.text,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def process_chat_completion_response(
|
def process_chat_completion_response(
|
||||||
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
||||||
) -> ChatCompletionResponse:
|
) -> ChatCompletionResponse:
|
||||||
choice = response.choices[0]
|
choice = response.choices[0]
|
||||||
|
|
||||||
stop_reason = None
|
|
||||||
if reason := choice.finish_reason:
|
|
||||||
if reason in ["stop", "eos"]:
|
|
||||||
stop_reason = StopReason.end_of_turn
|
|
||||||
elif reason == "eom":
|
|
||||||
stop_reason = StopReason.end_of_message
|
|
||||||
elif reason == "length":
|
|
||||||
stop_reason = StopReason.out_of_tokens
|
|
||||||
|
|
||||||
if stop_reason is None:
|
|
||||||
stop_reason = StopReason.out_of_tokens
|
|
||||||
|
|
||||||
completion_message = formatter.decode_assistant_message_from_content(
|
completion_message = formatter.decode_assistant_message_from_content(
|
||||||
text_from_choice(choice), stop_reason
|
text_from_choice(choice), get_stop_reason(choice.finish_reason)
|
||||||
)
|
)
|
||||||
return ChatCompletionResponse(
|
return ChatCompletionResponse(
|
||||||
completion_message=completion_message,
|
completion_message=completion_message,
|
||||||
|
@ -75,6 +87,43 @@ def process_chat_completion_response(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def process_completion_stream_response(
|
||||||
|
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
||||||
|
) -> AsyncGenerator:
|
||||||
|
|
||||||
|
stop_reason = None
|
||||||
|
|
||||||
|
async for chunk in stream:
|
||||||
|
choice = chunk.choices[0]
|
||||||
|
finish_reason = choice.finish_reason
|
||||||
|
|
||||||
|
if finish_reason:
|
||||||
|
if finish_reason in ["stop", "eos", "eos_token"]:
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif finish_reason == "length":
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
break
|
||||||
|
|
||||||
|
text = text_from_choice(choice)
|
||||||
|
if text == "<|eot_id|>":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
elif text == "<|eom_id|>":
|
||||||
|
stop_reason = StopReason.end_of_message
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
yield CompletionResponseStreamChunk(
|
||||||
|
delta=text,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
|
||||||
|
yield CompletionResponseStreamChunk(
|
||||||
|
delta="",
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
async def process_chat_completion_stream_response(
|
async def process_chat_completion_stream_response(
|
||||||
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
||||||
) -> AsyncGenerator:
|
) -> AsyncGenerator:
|
||||||
|
|
|
@ -23,6 +23,13 @@ from llama_models.sku_list import resolve_model
|
||||||
from llama_stack.providers.utils.inference import supported_inference_models
|
from llama_stack.providers.utils.inference import supported_inference_models
|
||||||
|
|
||||||
|
|
||||||
|
def completion_request_to_prompt(
|
||||||
|
request: CompletionRequest, formatter: ChatFormat
|
||||||
|
) -> str:
|
||||||
|
model_input = formatter.encode_content(request.content)
|
||||||
|
return formatter.tokenizer.decode(model_input.tokens)
|
||||||
|
|
||||||
|
|
||||||
def chat_completion_request_to_prompt(
|
def chat_completion_request_to_prompt(
|
||||||
request: ChatCompletionRequest, formatter: ChatFormat
|
request: ChatCompletionRequest, formatter: ChatFormat
|
||||||
) -> str:
|
) -> str:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue