mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-31 09:40:01 +00:00
qdrant UT
Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
This commit is contained in:
parent
3fa7129816
commit
1d3fccff20
5 changed files with 368 additions and 37 deletions
42
tests/unit/providers/vector_io/conftest.py
Normal file
42
tests/unit/providers/vector_io/conftest.py
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
|
||||
EMBEDDING_DIMENSION = 384
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vector_db_id() -> str:
|
||||
return f"test-vector-db-{random.randint(1, 100)}"
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def embedding_dimension() -> int:
|
||||
return EMBEDDING_DIMENSION
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def sample_chunks():
|
||||
"""Generates chunks that force multiple batches for a single document to expose ID conflicts."""
|
||||
n, k = 10, 3
|
||||
sample = [
|
||||
Chunk(content=f"Sentence {i} from document {j}", metadata={"document_id": f"document-{j}"})
|
||||
for j in range(k)
|
||||
for i in range(n)
|
||||
]
|
||||
return sample
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def sample_embeddings(sample_chunks):
|
||||
np.random.seed(42)
|
||||
return np.array([np.random.rand(EMBEDDING_DIMENSION).astype(np.float32) for _ in sample_chunks])
|
||||
132
tests/unit/providers/vector_io/test_qdrant.py
Normal file
132
tests/unit/providers/vector_io/test_qdrant.py
Normal file
|
|
@ -0,0 +1,132 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.inference import EmbeddingsResponse, Inference
|
||||
from llama_stack.apis.vector_io import (
|
||||
QueryChunksResponse,
|
||||
VectorDB,
|
||||
VectorDBStore,
|
||||
)
|
||||
from llama_stack.providers.inline.vector_io.qdrant.config import (
|
||||
QdrantVectorIOConfig as InlineQdrantVectorIOConfig,
|
||||
)
|
||||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
|
||||
QdrantVectorIOAdapter,
|
||||
)
|
||||
|
||||
# This test is a unit test for the QdrantVectorIOAdapter class. This should only contain
|
||||
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||
# tests/integration/vector_io/
|
||||
#
|
||||
# How to run this test:
|
||||
#
|
||||
# pytest tests/unit/providers/vector_io/test_qdrant.py \
|
||||
# -v -s --tb=short --disable-warnings --asyncio-mode=auto
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def qdrant_config(tmp_path) -> InlineQdrantVectorIOConfig:
|
||||
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"))
|
||||
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_vector_db(vector_db_id) -> MagicMock:
|
||||
mock_vector_db = MagicMock(spec=VectorDB)
|
||||
mock_vector_db.embedding_model = "embedding_model"
|
||||
mock_vector_db.identifier = vector_db_id
|
||||
return mock_vector_db
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_vector_db_store(mock_vector_db) -> MagicMock:
|
||||
mock_store = MagicMock(spec=VectorDBStore)
|
||||
mock_store.get_vector_db = AsyncMock(return_value=mock_vector_db)
|
||||
return mock_store
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_api_service(sample_embeddings):
|
||||
mock_api_service = MagicMock(spec=Inference)
|
||||
mock_api_service.embeddings = AsyncMock(return_value=EmbeddingsResponse(embeddings=sample_embeddings))
|
||||
return mock_api_service
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def qdrant_adapter(qdrant_config, mock_vector_db_store, mock_api_service) -> QdrantVectorIOAdapter:
|
||||
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service)
|
||||
adapter.vector_db_store = mock_vector_db_store
|
||||
await adapter.initialize()
|
||||
yield adapter
|
||||
await adapter.shutdown()
|
||||
|
||||
|
||||
__QUERY = "Sample query"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("max_query_chunks, expected_chunks", [(2, 2), (100, 30)])
|
||||
async def test_qdrant_adapter_returns_expected_chunks(
|
||||
qdrant_adapter: QdrantVectorIOAdapter,
|
||||
vector_db_id,
|
||||
sample_chunks,
|
||||
sample_embeddings,
|
||||
max_query_chunks,
|
||||
expected_chunks,
|
||||
) -> None:
|
||||
assert qdrant_adapter is not None
|
||||
await qdrant_adapter.insert_chunks(vector_db_id, sample_chunks)
|
||||
|
||||
index = await qdrant_adapter._get_and_cache_vector_db_index(vector_db_id=vector_db_id)
|
||||
assert index is not None
|
||||
|
||||
response = await qdrant_adapter.query_chunks(
|
||||
query=__QUERY,
|
||||
vector_db_id=vector_db_id,
|
||||
params={"max_chunks": max_query_chunks},
|
||||
)
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == expected_chunks
|
||||
|
||||
|
||||
# To by-pass attempt to convert a Mock to JSON
|
||||
def _prepare_for_json(value: Any) -> str:
|
||||
return str(value)
|
||||
|
||||
|
||||
@patch("llama_stack.providers.utils.telemetry.trace_protocol._prepare_for_json", new=_prepare_for_json)
|
||||
@pytest.mark.asyncio
|
||||
async def test_qdrant_register_and_unregister_vector_db(
|
||||
qdrant_adapter: QdrantVectorIOAdapter,
|
||||
mock_vector_db,
|
||||
sample_chunks,
|
||||
) -> None:
|
||||
# Initially, no collections
|
||||
vector_db_id = mock_vector_db.identifier
|
||||
assert len((await qdrant_adapter.client.get_collections()).collections) == 0
|
||||
|
||||
# Register does not create a collection
|
||||
assert not (await qdrant_adapter.client.collection_exists(vector_db_id))
|
||||
await qdrant_adapter.register_vector_db(mock_vector_db)
|
||||
assert not (await qdrant_adapter.client.collection_exists(vector_db_id))
|
||||
|
||||
# First insert creates the collection
|
||||
await qdrant_adapter.insert_chunks(vector_db_id, sample_chunks)
|
||||
assert await qdrant_adapter.client.collection_exists(vector_db_id)
|
||||
|
||||
# Unregister deletes the collection
|
||||
await qdrant_adapter.unregister_vector_db(vector_db_id)
|
||||
assert not (await qdrant_adapter.client.collection_exists(vector_db_id))
|
||||
assert len((await qdrant_adapter.client.get_collections()).collections) == 0
|
||||
|
|
@ -29,7 +29,6 @@ from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import (
|
|||
# -v -s --tb=short --disable-warnings --asyncio-mode=auto
|
||||
|
||||
SQLITE_VEC_PROVIDER = "sqlite_vec"
|
||||
EMBEDDING_DIMENSION = 384
|
||||
EMBEDDING_MODEL = "all-MiniLM-L6-v2"
|
||||
|
||||
|
||||
|
|
@ -50,26 +49,8 @@ def sqlite_connection(loop):
|
|||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session", autouse=True)
|
||||
async def sqlite_vec_index(sqlite_connection):
|
||||
return await SQLiteVecIndex.create(dimension=EMBEDDING_DIMENSION, connection=sqlite_connection, bank_id="test_bank")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def sample_chunks():
|
||||
"""Generates chunks that force multiple batches for a single document to expose ID conflicts."""
|
||||
n, k = 10, 3
|
||||
sample = [
|
||||
Chunk(content=f"Sentence {i} from document {j}", metadata={"document_id": f"document-{j}"})
|
||||
for j in range(k)
|
||||
for i in range(n)
|
||||
]
|
||||
return sample
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def sample_embeddings(sample_chunks):
|
||||
np.random.seed(42)
|
||||
return np.array([np.random.rand(EMBEDDING_DIMENSION).astype(np.float32) for _ in sample_chunks])
|
||||
async def sqlite_vec_index(sqlite_connection, embedding_dimension):
|
||||
return await SQLiteVecIndex.create(dimension=embedding_dimension, connection=sqlite_connection, bank_id="test_bank")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
|
@ -82,21 +63,21 @@ async def test_add_chunks(sqlite_vec_index, sample_chunks, sample_embeddings):
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_chunks(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||
async def test_query_chunks(sqlite_vec_index, sample_chunks, sample_embeddings, embedding_dimension):
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
query_embedding = np.random.rand(EMBEDDING_DIMENSION).astype(np.float32)
|
||||
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||
response = await sqlite_vec_index.query(query_embedding, k=2, score_threshold=0.0)
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_chunk_id_conflict(sqlite_vec_index, sample_chunks):
|
||||
async def test_chunk_id_conflict(sqlite_vec_index, sample_chunks, embedding_dimension):
|
||||
"""Test that chunk IDs do not conflict across batches when inserting chunks."""
|
||||
# Reduce batch size to force multiple batches for same document
|
||||
# since there are 10 chunks per document and batch size is 2
|
||||
batch_size = 2
|
||||
sample_embeddings = np.random.rand(len(sample_chunks), EMBEDDING_DIMENSION).astype(np.float32)
|
||||
sample_embeddings = np.random.rand(len(sample_chunks), embedding_dimension).astype(np.float32)
|
||||
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings, batch_size=batch_size)
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue