Merge branch 'main' into rag-metadata-support

This commit is contained in:
Francisco Arceo 2025-05-14 08:19:08 -06:00 committed by GitHub
commit 1e59ef1f76
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
20 changed files with 95 additions and 1046 deletions

View file

@ -28,7 +28,6 @@ if no model is specified.
Experimental, under development, options:
- `--record-responses`: record new API responses instead of using cached ones
- `--report`: path where the test report should be written, e.g. --report=/path/to/report.md
## Examples

View file

@ -15,8 +15,6 @@ from dotenv import load_dotenv
from llama_stack.log import get_logger
from .report import Report
logger = get_logger(__name__, category="tests")
@ -60,9 +58,6 @@ def pytest_configure(config):
os.environ["DISABLE_CODE_SANDBOX"] = "1"
logger.info("Setting DISABLE_CODE_SANDBOX=1 for macOS")
if config.getoption("--report"):
config.pluginmanager.register(Report(config))
def pytest_addoption(parser):
parser.addoption(

View file

@ -1,54 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import Api
INFERENCE_API_CAPA_TEST_MAP = {
"chat_completion": {
"streaming": [
"test_text_chat_completion_streaming",
"test_image_chat_completion_streaming",
],
"non_streaming": [
"test_image_chat_completion_non_streaming",
"test_text_chat_completion_non_streaming",
],
"tool_calling": [
"test_text_chat_completion_with_tool_calling_and_streaming",
"test_text_chat_completion_with_tool_calling_and_non_streaming",
],
"log_probs": [
"test_completion_log_probs_non_streaming",
"test_completion_log_probs_streaming",
],
},
"completion": {
"streaming": ["test_text_completion_streaming"],
"non_streaming": ["test_text_completion_non_streaming"],
"structured_output": ["test_text_completion_structured_output"],
},
}
VECTORIO_API_TEST_MAP = {
"retrieve": {
"": ["test_vector_db_retrieve"],
}
}
AGENTS_API_TEST_MAP = {
"create_agent_turn": {
"rag": ["test_rag_agent"],
"custom_tool": ["test_custom_tool"],
"code_execution": ["test_code_interpreter_for_attachments"],
}
}
API_MAPS = {
Api.inference: INFERENCE_API_CAPA_TEST_MAP,
Api.vector_io: VECTORIO_API_TEST_MAP,
Api.agents: AGENTS_API_TEST_MAP,
}

View file

@ -1,220 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections import defaultdict
from pathlib import Path
import pytest
from pytest import CollectReport
from termcolor import cprint
from llama_stack.models.llama.sku_list import (
all_registered_models,
llama3_1_instruct_models,
llama3_2_instruct_models,
llama3_3_instruct_models,
llama3_instruct_models,
safety_models,
)
from llama_stack.models.llama.sku_types import CoreModelId
from llama_stack.providers.datatypes import Api
from .metadata import API_MAPS
def featured_models():
models = [
*llama3_instruct_models(),
*llama3_1_instruct_models(),
*llama3_2_instruct_models(),
*llama3_3_instruct_models(),
*safety_models(),
]
return {model.huggingface_repo: model for model in models if not model.variant}
SUPPORTED_MODELS = {
"ollama": {
CoreModelId.llama3_1_8b_instruct.value,
CoreModelId.llama3_1_8b_instruct.value,
CoreModelId.llama3_1_70b_instruct.value,
CoreModelId.llama3_1_70b_instruct.value,
CoreModelId.llama3_1_405b_instruct.value,
CoreModelId.llama3_1_405b_instruct.value,
CoreModelId.llama3_2_1b_instruct.value,
CoreModelId.llama3_2_1b_instruct.value,
CoreModelId.llama3_2_3b_instruct.value,
CoreModelId.llama3_2_3b_instruct.value,
CoreModelId.llama3_2_11b_vision_instruct.value,
CoreModelId.llama3_2_11b_vision_instruct.value,
CoreModelId.llama3_2_90b_vision_instruct.value,
CoreModelId.llama3_2_90b_vision_instruct.value,
CoreModelId.llama3_3_70b_instruct.value,
CoreModelId.llama_guard_3_8b.value,
CoreModelId.llama_guard_3_1b.value,
},
"tgi": {model.core_model_id.value for model in all_registered_models() if model.huggingface_repo},
"vllm": {model.core_model_id.value for model in all_registered_models() if model.huggingface_repo},
}
class Report:
def __init__(self, config):
self.distro_name = None
self.config = config
self.output_path = Path(config.getoption("--report")) if config.getoption("--report") else None
stack_config = self.config.getoption("--stack-config")
if stack_config:
is_url = stack_config.startswith("http") or "//" in stack_config
is_yaml = stack_config.endswith(".yaml")
if not is_url and not is_yaml:
self.distro_name = stack_config
self.report_data = defaultdict(dict)
# test function -> test nodeid
self.test_data = dict()
self.test_name_to_nodeid = defaultdict(list)
self.vision_model_id = None
self.text_model_id = None
self.client = None
@pytest.hookimpl(tryfirst=True)
def pytest_runtest_logreport(self, report):
# This hook is called in several phases, including setup, call and teardown
# The test is considered failed / error if any of the outcomes is not "Passed"
outcome = self._process_outcome(report)
if report.nodeid not in self.test_data:
self.test_data[report.nodeid] = outcome
elif self.test_data[report.nodeid] != outcome and outcome != "Passed":
self.test_data[report.nodeid] = outcome
def pytest_sessionfinish(self, session):
if not self.client:
return
report = []
report.append(f"# Report for {self.distro_name} distribution")
report.append("\n## Supported Models")
header = f"| Model Descriptor | {self.distro_name} |"
dividor = "|:---|:---|"
report.append(header)
report.append(dividor)
rows = []
if self.distro_name in SUPPORTED_MODELS:
for model in all_registered_models():
if ("Instruct" not in model.core_model_id.value and "Guard" not in model.core_model_id.value) or (
model.variant
):
continue
row = f"| {model.core_model_id.value} |"
if model.core_model_id.value in SUPPORTED_MODELS[self.distro_name]:
row += " ✅ |"
else:
row += " ❌ |"
rows.append(row)
else:
supported_models = {m.identifier for m in self.client.models.list()}
for hf_name, model in featured_models().items():
row = f"| {model.core_model_id.value} |"
if hf_name in supported_models:
row += " ✅ |"
else:
row += " ❌ |"
rows.append(row)
report.extend(rows)
report.append("\n## Inference")
test_table = [
"| Model | API | Capability | Test | Status |",
"|:----- |:-----|:-----|:-----|:-----|",
]
for api, capa_map in API_MAPS[Api.inference].items():
for capa, tests in capa_map.items():
for test_name in tests:
model_id = self.text_model_id if "text" in test_name else self.vision_model_id
test_nodeids = self.test_name_to_nodeid[test_name]
if not test_nodeids:
continue
# There might be more than one parametrizations for the same test function. We take
# the result of the first one for now. Ideally we should mark the test as failed if
# any of the parametrizations failed.
test_table.append(
f"| {model_id} | /{api} | {capa} | {test_name} | {self._print_result_icon(self.test_data[test_nodeids[0]])} |"
)
report.extend(test_table)
name_map = {Api.vector_io: "Vector IO", Api.agents: "Agents"}
providers = self.client.providers.list()
for api_group in [Api.vector_io, Api.agents]:
api_capitalized = name_map[api_group]
report.append(f"\n## {api_capitalized}")
test_table = [
"| Provider | API | Capability | Test | Status |",
"|:-----|:-----|:-----|:-----|:-----|",
]
provider = [p for p in providers if p.api == str(api_group.name)]
provider_str = ",".join(str(p) for p in provider) if provider else ""
for api, capa_map in API_MAPS[api_group].items():
for capa, tests in capa_map.items():
for test_name in tests:
test_nodeids = self.test_name_to_nodeid[test_name]
if not test_nodeids:
continue
test_table.append(
f"| {provider_str} | /{api} | {capa} | {test_name} | {self._print_result_icon(self.test_data[test_nodeids[0]])} |"
)
report.extend(test_table)
output_file = self.output_path
text = "\n".join(report) + "\n"
output_file.write_text(text)
cprint(f"\nReport generated: {output_file.absolute()}", "green")
def pytest_runtest_makereport(self, item, call):
func_name = getattr(item, "originalname", item.name)
self.test_name_to_nodeid[func_name].append(item.nodeid)
# Get values from fixtures for report output
if model_id := item.funcargs.get("text_model_id"):
parts = model_id.split("/")
text_model = parts[1] if len(parts) > 1 else model_id
self.text_model_id = self.text_model_id or text_model
elif model_id := item.funcargs.get("vision_model_id"):
parts = model_id.split("/")
vision_model = parts[1] if len(parts) > 1 else model_id
self.vision_model_id = self.vision_model_id or vision_model
if not self.client:
self.client = item.funcargs.get("llama_stack_client")
def _print_result_icon(self, result):
if result == "Passed":
return ""
elif result == "Failed" or result == "Error":
return ""
else:
# result == "Skipped":
return "⏭️"
def _process_outcome(self, report: CollectReport):
if self._is_error(report):
return "Error"
if hasattr(report, "wasxfail"):
if report.outcome in ["passed", "failed"]:
return "XPassed"
if report.outcome == "skipped":
return "XFailed"
return report.outcome.capitalize()
def _is_error(self, report: CollectReport):
return report.when in ["setup", "teardown", "collect"] and report.outcome == "failed"

View file

@ -28,6 +28,7 @@ from openai.types.model import Model as OpenAIModel
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponseEventType,
CompletionMessage,
SystemMessage,
ToolChoice,
@ -294,3 +295,82 @@ async def test_get_params_empty_tools(vllm_inference_adapter):
)
params = await vllm_inference_adapter._get_params(request)
assert "tools" not in params
@pytest.mark.asyncio
async def test_process_vllm_chat_completion_stream_response_tool_call_args_last_chunk():
"""
Tests the edge case where the model returns the arguments for the tool call in the same chunk that
contains the finish reason (i.e., the last one).
We want to make sure the tool call is executed in this case, and the parameters are passed correctly.
"""
mock_tool_name = "mock_tool"
mock_tool_arguments = {"arg1": 0, "arg2": 100}
mock_tool_arguments_str = json.dumps(mock_tool_arguments)
async def mock_stream():
mock_chunks = [
OpenAIChatCompletionChunk(
id="chunk-1",
created=1,
model="foo",
object="chat.completion.chunk",
choices=[
{
"delta": {
"content": None,
"tool_calls": [
{
"index": 0,
"id": "mock_id",
"type": "function",
"function": {
"name": mock_tool_name,
"arguments": None,
},
}
],
},
"finish_reason": None,
"logprobs": None,
"index": 0,
}
],
),
OpenAIChatCompletionChunk(
id="chunk-1",
created=1,
model="foo",
object="chat.completion.chunk",
choices=[
{
"delta": {
"content": None,
"tool_calls": [
{
"index": 0,
"id": None,
"function": {
"name": None,
"arguments": mock_tool_arguments_str,
},
}
],
},
"finish_reason": "tool_calls",
"logprobs": None,
"index": 0,
}
],
),
]
for chunk in mock_chunks:
yield chunk
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
assert len(chunks) == 2
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
assert chunks[-2].event.delta.type == "tool_call"
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
assert chunks[-2].event.delta.tool_call.arguments == mock_tool_arguments

View file

@ -79,7 +79,7 @@ test_response_multi_turn_image:
- type: input_image
image_url: "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg"
output: "llama"
- input: "Search the web using the search tool for the animal from the previous response. Your search query should be a single phrase that includes the animal's name and the words 'maverick' and 'scout'."
- input: "Search the web using the search tool for the animal from the previous response. Your search query should be a single phrase that includes the animal's name and the words 'maverick', 'scout' and 'llm'"
tools:
- type: web_search
output: "model"