mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 03:52:00 +00:00
Merge branch 'main' into rag-metadata-support
This commit is contained in:
commit
1e59ef1f76
20 changed files with 95 additions and 1046 deletions
|
|
@ -28,7 +28,6 @@ if no model is specified.
|
|||
|
||||
Experimental, under development, options:
|
||||
- `--record-responses`: record new API responses instead of using cached ones
|
||||
- `--report`: path where the test report should be written, e.g. --report=/path/to/report.md
|
||||
|
||||
|
||||
## Examples
|
||||
|
|
|
|||
|
|
@ -15,8 +15,6 @@ from dotenv import load_dotenv
|
|||
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from .report import Report
|
||||
|
||||
logger = get_logger(__name__, category="tests")
|
||||
|
||||
|
||||
|
|
@ -60,9 +58,6 @@ def pytest_configure(config):
|
|||
os.environ["DISABLE_CODE_SANDBOX"] = "1"
|
||||
logger.info("Setting DISABLE_CODE_SANDBOX=1 for macOS")
|
||||
|
||||
if config.getoption("--report"):
|
||||
config.pluginmanager.register(Report(config))
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
|
|
|
|||
|
|
@ -1,54 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
INFERENCE_API_CAPA_TEST_MAP = {
|
||||
"chat_completion": {
|
||||
"streaming": [
|
||||
"test_text_chat_completion_streaming",
|
||||
"test_image_chat_completion_streaming",
|
||||
],
|
||||
"non_streaming": [
|
||||
"test_image_chat_completion_non_streaming",
|
||||
"test_text_chat_completion_non_streaming",
|
||||
],
|
||||
"tool_calling": [
|
||||
"test_text_chat_completion_with_tool_calling_and_streaming",
|
||||
"test_text_chat_completion_with_tool_calling_and_non_streaming",
|
||||
],
|
||||
"log_probs": [
|
||||
"test_completion_log_probs_non_streaming",
|
||||
"test_completion_log_probs_streaming",
|
||||
],
|
||||
},
|
||||
"completion": {
|
||||
"streaming": ["test_text_completion_streaming"],
|
||||
"non_streaming": ["test_text_completion_non_streaming"],
|
||||
"structured_output": ["test_text_completion_structured_output"],
|
||||
},
|
||||
}
|
||||
|
||||
VECTORIO_API_TEST_MAP = {
|
||||
"retrieve": {
|
||||
"": ["test_vector_db_retrieve"],
|
||||
}
|
||||
}
|
||||
|
||||
AGENTS_API_TEST_MAP = {
|
||||
"create_agent_turn": {
|
||||
"rag": ["test_rag_agent"],
|
||||
"custom_tool": ["test_custom_tool"],
|
||||
"code_execution": ["test_code_interpreter_for_attachments"],
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
API_MAPS = {
|
||||
Api.inference: INFERENCE_API_CAPA_TEST_MAP,
|
||||
Api.vector_io: VECTORIO_API_TEST_MAP,
|
||||
Api.agents: AGENTS_API_TEST_MAP,
|
||||
}
|
||||
|
|
@ -1,220 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from pytest import CollectReport
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.models.llama.sku_list import (
|
||||
all_registered_models,
|
||||
llama3_1_instruct_models,
|
||||
llama3_2_instruct_models,
|
||||
llama3_3_instruct_models,
|
||||
llama3_instruct_models,
|
||||
safety_models,
|
||||
)
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
from .metadata import API_MAPS
|
||||
|
||||
|
||||
def featured_models():
|
||||
models = [
|
||||
*llama3_instruct_models(),
|
||||
*llama3_1_instruct_models(),
|
||||
*llama3_2_instruct_models(),
|
||||
*llama3_3_instruct_models(),
|
||||
*safety_models(),
|
||||
]
|
||||
return {model.huggingface_repo: model for model in models if not model.variant}
|
||||
|
||||
|
||||
SUPPORTED_MODELS = {
|
||||
"ollama": {
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
CoreModelId.llama_guard_3_1b.value,
|
||||
},
|
||||
"tgi": {model.core_model_id.value for model in all_registered_models() if model.huggingface_repo},
|
||||
"vllm": {model.core_model_id.value for model in all_registered_models() if model.huggingface_repo},
|
||||
}
|
||||
|
||||
|
||||
class Report:
|
||||
def __init__(self, config):
|
||||
self.distro_name = None
|
||||
self.config = config
|
||||
self.output_path = Path(config.getoption("--report")) if config.getoption("--report") else None
|
||||
|
||||
stack_config = self.config.getoption("--stack-config")
|
||||
if stack_config:
|
||||
is_url = stack_config.startswith("http") or "//" in stack_config
|
||||
is_yaml = stack_config.endswith(".yaml")
|
||||
if not is_url and not is_yaml:
|
||||
self.distro_name = stack_config
|
||||
|
||||
self.report_data = defaultdict(dict)
|
||||
# test function -> test nodeid
|
||||
self.test_data = dict()
|
||||
self.test_name_to_nodeid = defaultdict(list)
|
||||
self.vision_model_id = None
|
||||
self.text_model_id = None
|
||||
self.client = None
|
||||
|
||||
@pytest.hookimpl(tryfirst=True)
|
||||
def pytest_runtest_logreport(self, report):
|
||||
# This hook is called in several phases, including setup, call and teardown
|
||||
# The test is considered failed / error if any of the outcomes is not "Passed"
|
||||
outcome = self._process_outcome(report)
|
||||
if report.nodeid not in self.test_data:
|
||||
self.test_data[report.nodeid] = outcome
|
||||
elif self.test_data[report.nodeid] != outcome and outcome != "Passed":
|
||||
self.test_data[report.nodeid] = outcome
|
||||
|
||||
def pytest_sessionfinish(self, session):
|
||||
if not self.client:
|
||||
return
|
||||
|
||||
report = []
|
||||
report.append(f"# Report for {self.distro_name} distribution")
|
||||
report.append("\n## Supported Models")
|
||||
|
||||
header = f"| Model Descriptor | {self.distro_name} |"
|
||||
dividor = "|:---|:---|"
|
||||
|
||||
report.append(header)
|
||||
report.append(dividor)
|
||||
|
||||
rows = []
|
||||
if self.distro_name in SUPPORTED_MODELS:
|
||||
for model in all_registered_models():
|
||||
if ("Instruct" not in model.core_model_id.value and "Guard" not in model.core_model_id.value) or (
|
||||
model.variant
|
||||
):
|
||||
continue
|
||||
row = f"| {model.core_model_id.value} |"
|
||||
if model.core_model_id.value in SUPPORTED_MODELS[self.distro_name]:
|
||||
row += " ✅ |"
|
||||
else:
|
||||
row += " ❌ |"
|
||||
rows.append(row)
|
||||
else:
|
||||
supported_models = {m.identifier for m in self.client.models.list()}
|
||||
for hf_name, model in featured_models().items():
|
||||
row = f"| {model.core_model_id.value} |"
|
||||
if hf_name in supported_models:
|
||||
row += " ✅ |"
|
||||
else:
|
||||
row += " ❌ |"
|
||||
rows.append(row)
|
||||
report.extend(rows)
|
||||
|
||||
report.append("\n## Inference")
|
||||
test_table = [
|
||||
"| Model | API | Capability | Test | Status |",
|
||||
"|:----- |:-----|:-----|:-----|:-----|",
|
||||
]
|
||||
for api, capa_map in API_MAPS[Api.inference].items():
|
||||
for capa, tests in capa_map.items():
|
||||
for test_name in tests:
|
||||
model_id = self.text_model_id if "text" in test_name else self.vision_model_id
|
||||
test_nodeids = self.test_name_to_nodeid[test_name]
|
||||
if not test_nodeids:
|
||||
continue
|
||||
|
||||
# There might be more than one parametrizations for the same test function. We take
|
||||
# the result of the first one for now. Ideally we should mark the test as failed if
|
||||
# any of the parametrizations failed.
|
||||
test_table.append(
|
||||
f"| {model_id} | /{api} | {capa} | {test_name} | {self._print_result_icon(self.test_data[test_nodeids[0]])} |"
|
||||
)
|
||||
|
||||
report.extend(test_table)
|
||||
|
||||
name_map = {Api.vector_io: "Vector IO", Api.agents: "Agents"}
|
||||
providers = self.client.providers.list()
|
||||
for api_group in [Api.vector_io, Api.agents]:
|
||||
api_capitalized = name_map[api_group]
|
||||
report.append(f"\n## {api_capitalized}")
|
||||
test_table = [
|
||||
"| Provider | API | Capability | Test | Status |",
|
||||
"|:-----|:-----|:-----|:-----|:-----|",
|
||||
]
|
||||
provider = [p for p in providers if p.api == str(api_group.name)]
|
||||
provider_str = ",".join(str(p) for p in provider) if provider else ""
|
||||
for api, capa_map in API_MAPS[api_group].items():
|
||||
for capa, tests in capa_map.items():
|
||||
for test_name in tests:
|
||||
test_nodeids = self.test_name_to_nodeid[test_name]
|
||||
if not test_nodeids:
|
||||
continue
|
||||
test_table.append(
|
||||
f"| {provider_str} | /{api} | {capa} | {test_name} | {self._print_result_icon(self.test_data[test_nodeids[0]])} |"
|
||||
)
|
||||
report.extend(test_table)
|
||||
|
||||
output_file = self.output_path
|
||||
text = "\n".join(report) + "\n"
|
||||
output_file.write_text(text)
|
||||
cprint(f"\nReport generated: {output_file.absolute()}", "green")
|
||||
|
||||
def pytest_runtest_makereport(self, item, call):
|
||||
func_name = getattr(item, "originalname", item.name)
|
||||
self.test_name_to_nodeid[func_name].append(item.nodeid)
|
||||
|
||||
# Get values from fixtures for report output
|
||||
if model_id := item.funcargs.get("text_model_id"):
|
||||
parts = model_id.split("/")
|
||||
text_model = parts[1] if len(parts) > 1 else model_id
|
||||
self.text_model_id = self.text_model_id or text_model
|
||||
elif model_id := item.funcargs.get("vision_model_id"):
|
||||
parts = model_id.split("/")
|
||||
vision_model = parts[1] if len(parts) > 1 else model_id
|
||||
self.vision_model_id = self.vision_model_id or vision_model
|
||||
|
||||
if not self.client:
|
||||
self.client = item.funcargs.get("llama_stack_client")
|
||||
|
||||
def _print_result_icon(self, result):
|
||||
if result == "Passed":
|
||||
return "✅"
|
||||
elif result == "Failed" or result == "Error":
|
||||
return "❌"
|
||||
else:
|
||||
# result == "Skipped":
|
||||
return "⏭️"
|
||||
|
||||
def _process_outcome(self, report: CollectReport):
|
||||
if self._is_error(report):
|
||||
return "Error"
|
||||
if hasattr(report, "wasxfail"):
|
||||
if report.outcome in ["passed", "failed"]:
|
||||
return "XPassed"
|
||||
if report.outcome == "skipped":
|
||||
return "XFailed"
|
||||
return report.outcome.capitalize()
|
||||
|
||||
def _is_error(self, report: CollectReport):
|
||||
return report.when in ["setup", "teardown", "collect"] and report.outcome == "failed"
|
||||
|
|
@ -28,6 +28,7 @@ from openai.types.model import Model as OpenAIModel
|
|||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponseEventType,
|
||||
CompletionMessage,
|
||||
SystemMessage,
|
||||
ToolChoice,
|
||||
|
|
@ -294,3 +295,82 @@ async def test_get_params_empty_tools(vllm_inference_adapter):
|
|||
)
|
||||
params = await vllm_inference_adapter._get_params(request)
|
||||
assert "tools" not in params
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_vllm_chat_completion_stream_response_tool_call_args_last_chunk():
|
||||
"""
|
||||
Tests the edge case where the model returns the arguments for the tool call in the same chunk that
|
||||
contains the finish reason (i.e., the last one).
|
||||
We want to make sure the tool call is executed in this case, and the parameters are passed correctly.
|
||||
"""
|
||||
|
||||
mock_tool_name = "mock_tool"
|
||||
mock_tool_arguments = {"arg1": 0, "arg2": 100}
|
||||
mock_tool_arguments_str = json.dumps(mock_tool_arguments)
|
||||
|
||||
async def mock_stream():
|
||||
mock_chunks = [
|
||||
OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
{
|
||||
"delta": {
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": "mock_id",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": mock_tool_name,
|
||||
"arguments": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
"finish_reason": None,
|
||||
"logprobs": None,
|
||||
"index": 0,
|
||||
}
|
||||
],
|
||||
),
|
||||
OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
{
|
||||
"delta": {
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": None,
|
||||
"function": {
|
||||
"name": None,
|
||||
"arguments": mock_tool_arguments_str,
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
"finish_reason": "tool_calls",
|
||||
"logprobs": None,
|
||||
"index": 0,
|
||||
}
|
||||
],
|
||||
),
|
||||
]
|
||||
for chunk in mock_chunks:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 2
|
||||
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
|
||||
assert chunks[-2].event.delta.type == "tool_call"
|
||||
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
||||
assert chunks[-2].event.delta.tool_call.arguments == mock_tool_arguments
|
||||
|
|
|
|||
|
|
@ -79,7 +79,7 @@ test_response_multi_turn_image:
|
|||
- type: input_image
|
||||
image_url: "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg"
|
||||
output: "llama"
|
||||
- input: "Search the web using the search tool for the animal from the previous response. Your search query should be a single phrase that includes the animal's name and the words 'maverick' and 'scout'."
|
||||
- input: "Search the web using the search tool for the animal from the previous response. Your search query should be a single phrase that includes the animal's name and the words 'maverick', 'scout' and 'llm'"
|
||||
tools:
|
||||
- type: web_search
|
||||
output: "model"
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue