mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-31 16:01:46 +00:00
Add ollama/pull-models.sh
This commit is contained in:
parent
fa1d29cfdc
commit
1ecaf2cb3c
16 changed files with 305 additions and 289 deletions
|
@ -1,30 +1,71 @@
|
|||
services:
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
network_mode: "host"
|
||||
network_mode: ${NETWORK_MODE:-bridge}
|
||||
volumes:
|
||||
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
|
||||
- ~/.ollama:/root/.ollama
|
||||
ports:
|
||||
- "11434:11434"
|
||||
environment:
|
||||
OLLAMA_DEBUG: 1
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
limits:
|
||||
memory: 8G # Set maximum memory
|
||||
reservations:
|
||||
memory: 8G # Set minimum memory reservation
|
||||
# healthcheck:
|
||||
# # ugh, no CURL in ollama image
|
||||
# test: ["CMD", "curl", "-f", "http://ollama:11434"]
|
||||
# interval: 10s
|
||||
# timeout: 5s
|
||||
# retries: 5
|
||||
|
||||
ollama-init:
|
||||
image: ollama/ollama:latest
|
||||
depends_on:
|
||||
- ollama
|
||||
# condition: service_healthy
|
||||
network_mode: ${NETWORK_MODE:-bridge}
|
||||
environment:
|
||||
- OLLAMA_HOST=ollama
|
||||
- INFERENCE_MODEL=${INFERENCE_MODEL}
|
||||
- SAFETY_MODEL=${SAFETY_MODEL:-}
|
||||
volumes:
|
||||
- ~/.ollama:/root/.ollama
|
||||
- ./pull-models.sh:/pull-models.sh
|
||||
entrypoint: ["/pull-models.sh"]
|
||||
|
||||
llamastack:
|
||||
depends_on:
|
||||
- ollama
|
||||
image: llamastack/distribution-ollama
|
||||
network_mode: "host"
|
||||
ollama:
|
||||
condition: service_started
|
||||
ollama-init:
|
||||
condition: service_started
|
||||
image: ${LLAMA_STACK_IMAGE:-llamastack/distribution-ollama}
|
||||
network_mode: ${NETWORK_MODE:-bridge}
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
- ~/local/llama-stack/:/app/llama-stack-source
|
||||
- ./run${SAFETY_MODEL:+-with-safety}.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
|
||||
environment:
|
||||
- INFERENCE_MODEL=${INFERENCE_MODEL}
|
||||
- SAFETY_MODEL=${SAFETY_MODEL:-}
|
||||
- OLLAMA_URL=http://ollama:11434
|
||||
entrypoint: >
|
||||
python -m llama_stack.distribution.server.server /root/my-run.yaml \
|
||||
--port ${LLAMA_STACK_PORT:-5001}
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
delay: 10s
|
||||
max_attempts: 3
|
||||
window: 60s
|
||||
volumes:
|
||||
ollama:
|
||||
ollama-init:
|
||||
llamastack:
|
||||
|
|
18
distributions/ollama/pull-models.sh
Executable file
18
distributions/ollama/pull-models.sh
Executable file
|
@ -0,0 +1,18 @@
|
|||
#!/bin/sh
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
echo "Preloading (${INFERENCE_MODEL}, ${SAFETY_MODEL})..."
|
||||
for model in ${INFERENCE_MODEL} ${SAFETY_MODEL}; do
|
||||
echo "Preloading $model..."
|
||||
if ! ollama run "$model"; then
|
||||
echo "Failed to pull and run $model"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
|
||||
echo "All models pulled successfully"
|
|
@ -1,13 +1,12 @@
|
|||
version: '2'
|
||||
built_at: 2024-11-17 19:33:00
|
||||
image_name: ollama
|
||||
docker_image: null
|
||||
conda_env: null
|
||||
apis:
|
||||
- memory
|
||||
- agents
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
|
@ -46,11 +45,11 @@ metadata_store:
|
|||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ollama-inference
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: ollama-safety
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
shields:
|
||||
- params: null
|
||||
|
|
|
@ -3,10 +3,10 @@ image_name: ollama
|
|||
docker_image: null
|
||||
conda_env: null
|
||||
apis:
|
||||
- memory
|
||||
- agents
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
|
@ -45,7 +45,7 @@ metadata_store:
|
|||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ollama-inference
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
memory_banks: []
|
||||
|
|
|
@ -1,13 +1,12 @@
|
|||
version: '2'
|
||||
built_at: 2024-11-17 19:33:00
|
||||
image_name: remote-vllm
|
||||
docker_image: llamastack/distribution-remote-vllm:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- memory
|
||||
- agents
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
|
|
|
@ -3,10 +3,10 @@ image_name: remote-vllm
|
|||
docker_image: llamastack/distribution-remote-vllm:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- memory
|
||||
- agents
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
|
|
|
@ -1,13 +1,12 @@
|
|||
version: '2'
|
||||
built_at: 2024-11-17 19:33:00
|
||||
image_name: tgi
|
||||
docker_image: llamastack/distribution-tgi:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- memory
|
||||
- agents
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
|
@ -18,7 +17,7 @@ providers:
|
|||
- provider_id: tgi-safety
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.SAFETY_TGI_URL}
|
||||
url: ${env.TGI_SAFETY_URL}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
|
|
|
@ -3,10 +3,10 @@ image_name: tgi
|
|||
docker_image: llamastack/distribution-tgi:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- memory
|
||||
- agents
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
|
|
|
@ -2,27 +2,16 @@
|
|||
|
||||
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
|
||||
|
||||
Provider Configuration
|
||||
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ API ┃ Provider(s) ┃
|
||||
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ agents │ `inline::meta-reference` │
|
||||
│ inference │ `remote::ollama` │
|
||||
│ memory │ `inline::faiss`, `remote::chromadb`, `remote::pgvector` │
|
||||
│ safety │ `inline::llama-guard` │
|
||||
│ telemetry │ `inline::meta-reference` │
|
||||
└───────────┴─────────────────────────────────────────────────────────┘
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::ollama` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `OLLAMA_URL`: URL of the Ollama server (default: `http://host.docker.internal:11434`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
### Models
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Models
|
||||
|
||||
The following models are configured by default:
|
||||
- `${env.INFERENCE_MODEL}`
|
||||
|
|
|
@ -2,29 +2,16 @@
|
|||
|
||||
The `llamastack/distribution-remote-vllm` distribution consists of the following provider configurations:
|
||||
|
||||
Provider Configuration
|
||||
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ API ┃ Provider(s) ┃
|
||||
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ agents │ `inline::meta-reference` │
|
||||
│ inference │ `remote::vllm` │
|
||||
│ memory │ `inline::faiss`, `remote::chromadb`, `remote::pgvector` │
|
||||
│ safety │ `inline::llama-guard` │
|
||||
│ telemetry │ `inline::meta-reference` │
|
||||
└───────────┴─────────────────────────────────────────────────────────┘
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::vllm` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the vLLM server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100}/v1`)
|
||||
- `MAX_TOKENS`: Maximum number of tokens for generation (default: `4096`)
|
||||
- `SAFETY_VLLM_URL`: URL of the vLLM server with the safety model (default: `http://host.docker.internal:5101/v1`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.
|
||||
### Models
|
||||
|
||||
The following models are configured by default:
|
||||
|
|
|
@ -2,128 +2,127 @@
|
|||
|
||||
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
|
||||
|
||||
Provider Configuration
|
||||
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ API ┃ Provider(s) ┃
|
||||
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ agents │ `inline::meta-reference` │
|
||||
│ inference │ `remote::tgi` │
|
||||
│ memory │ `inline::faiss`, `remote::chromadb`, `remote::pgvector` │
|
||||
│ safety │ `inline::llama-guard` │
|
||||
│ telemetry │ `inline::meta-reference` │
|
||||
└───────────┴─────────────────────────────────────────────────────────┘
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::tgi` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.### Environment Variables
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://host.docker.internal:8080}/v1`)
|
||||
- `SAFETY_TGI_URL`: URL of the TGI server with the safety model (default: `http://host.docker.internal:8081/v1`)
|
||||
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080}/v1`)
|
||||
- `TGI_SAFETY_URL`: URL of the TGI server with the safety model (default: `http://127.0.0.1:8081/v1`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
### Models
|
||||
|
||||
The following models are configured by default:
|
||||
- `${env.INFERENCE_MODEL}`
|
||||
- `${env.SAFETY_MODEL}`
|
||||
|
||||
|
||||
## Using Docker Compose
|
||||
## Setting up TGI server
|
||||
|
||||
You can use `docker compose` to start a TGI container and Llama Stack server container together.
|
||||
Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
|
||||
|
||||
```bash
|
||||
$ cd distributions/tgi; docker compose up
|
||||
export TGI_INFERENCE_PORT=8080
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $TGI_INFERENCE_PORT:$TGI_INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $TGI_INFERENCE_PORT
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```bash
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5001 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```bash
|
||||
docker compose down
|
||||
```
|
||||
|
||||
|
||||
### Conda: TGI server + llama stack run
|
||||
|
||||
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### Start TGI server locally
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats on --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
export TGI_SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $TGI_SAFETY_PORT:$TGI_SAFETY_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--port $TGI_SAFETY_PORT
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
## Running Llama Stack with TGI as the inference provider
|
||||
|
||||
**Via Conda**
|
||||
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
--network host \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-tgi \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$TGI_INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
--network host \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-tgi \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$TGI_INFERENCE_PORT \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://host.docker.internal:$TGI_SAFETY_PORT
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template tgi --image-type conda
|
||||
# -- start a TGI server endpoint
|
||||
llama stack run ./gpu/run.yaml
|
||||
llama stack run ./run.yaml
|
||||
--port 5001
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
--env TGI_URL=http://127.0.0.1:$TGI_INFERENCE_PORT
|
||||
```
|
||||
|
||||
**Via Docker**
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run --network host -it -p 5001:5001 \
|
||||
-v ./run.yaml:/root/my-run.yaml --gpus=all \
|
||||
llamastack/distribution-tgi \
|
||||
--yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
We have provided a template `run.yaml` file in the `distributions/tgi` directory. Make sure in your `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
To serve a new model with `tgi`, change the docker command flag `--model-id <model-to-serve>`.
|
||||
|
||||
This can be done by edit the `command` args in `compose.yaml`. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
|
||||
|
||||
```yaml
|
||||
command: >
|
||||
--dtype bfloat16 --usage-stats on --sharded false
|
||||
--model-id meta-llama/Llama-3.2-1B-Instruct
|
||||
--port 5009 --cuda-memory-fraction 0.7
|
||||
```
|
||||
|
||||
or by changing the docker run command's `--model-id` flag
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats off --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
```
|
||||
|
||||
In `run.yaml`, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
llama stack run ./run-with-safety.yaml
|
||||
--port 5001
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
--env TGI_URL=http://127.0.0.1:$TGI_INFERENCE_PORT
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL
|
||||
--env TGI_SAFETY_URL=http://127.0.0.1:$TGI_SAFETY_PORT
|
||||
```
|
||||
|
|
|
@ -21,7 +21,9 @@ def find_template_dirs(templates_dir: Path) -> Iterator[Path]:
|
|||
if not templates_dir.exists():
|
||||
raise FileNotFoundError(f"Templates directory not found: {templates_dir}")
|
||||
|
||||
return (d for d in templates_dir.iterdir() if d.is_dir())
|
||||
return (
|
||||
d for d in templates_dir.iterdir() if d.is_dir() and d.name != "__pycache__"
|
||||
)
|
||||
|
||||
|
||||
def process_template(template_dir: Path, progress) -> None:
|
||||
|
|
|
@ -28,11 +28,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="ollama-inference",
|
||||
provider_id="ollama",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="ollama-safety",
|
||||
provider_id="ollama",
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
|
|
|
@ -4,18 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from io import StringIO
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Literal, Optional, Set, Tuple
|
||||
from typing import Dict, List, Literal, Optional, Tuple
|
||||
|
||||
import jinja2
|
||||
import yaml
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from llama_stack.distribution.datatypes import (
|
||||
Api,
|
||||
BuildConfig,
|
||||
|
@ -80,12 +75,12 @@ class RunConfigSettings(BaseModel):
|
|||
]
|
||||
|
||||
# Get unique set of APIs from providers
|
||||
apis: Set[str] = set(providers.keys())
|
||||
apis = list(sorted(providers.keys()))
|
||||
|
||||
return StackRunConfig(
|
||||
image_name=name,
|
||||
docker_image=docker_image,
|
||||
apis=list(apis),
|
||||
apis=apis,
|
||||
providers=provider_configs,
|
||||
metadata_store=SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=f"distributions/{name}",
|
||||
|
@ -111,7 +106,7 @@ class DistributionTemplate(BaseModel):
|
|||
template_path: Path
|
||||
|
||||
# Optional configuration
|
||||
docker_compose_env_vars: Optional[Dict[str, Tuple[str, str]]] = None
|
||||
run_config_env_vars: Optional[Dict[str, Tuple[str, str]]] = None
|
||||
docker_image: Optional[str] = None
|
||||
|
||||
default_models: Optional[List[ModelInput]] = None
|
||||
|
@ -128,20 +123,12 @@ class DistributionTemplate(BaseModel):
|
|||
)
|
||||
|
||||
def generate_markdown_docs(self) -> str:
|
||||
"""Generate markdown documentation using both Jinja2 templates and rich tables."""
|
||||
# First generate the providers table using rich
|
||||
output = StringIO()
|
||||
console = Console(file=output, force_terminal=False)
|
||||
|
||||
table = Table(title="Provider Configuration", show_header=True)
|
||||
table.add_column("API", style="bold")
|
||||
table.add_column("Provider(s)")
|
||||
providers_table = "| API | Provider(s) |\n"
|
||||
providers_table += "|-----|-------------|\n"
|
||||
|
||||
for api, providers in sorted(self.providers.items()):
|
||||
table.add_row(api, ", ".join(f"`{p}`" for p in providers))
|
||||
|
||||
console.print(table)
|
||||
providers_table = output.getvalue()
|
||||
providers_str = ", ".join(f"`{p}`" for p in providers)
|
||||
providers_table += f"| {api} | {providers_str} |\n"
|
||||
|
||||
template = self.template_path.read_text()
|
||||
# Render template with rich-generated table
|
||||
|
@ -152,7 +139,7 @@ class DistributionTemplate(BaseModel):
|
|||
description=self.description,
|
||||
providers=self.providers,
|
||||
providers_table=providers_table,
|
||||
docker_compose_env_vars=self.docker_compose_env_vars,
|
||||
run_config_env_vars=self.run_config_env_vars,
|
||||
default_models=self.default_models,
|
||||
)
|
||||
|
||||
|
|
|
@ -6,120 +6,116 @@ The `llamastack/distribution-{{ name }}` distribution consists of the following
|
|||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
|
||||
{%- if docker_compose_env_vars %}
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in docker_compose_env_vars.items() %}
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{%- if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are configured by default:
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
## Setting up TGI server
|
||||
|
||||
|
||||
## Using Docker Compose
|
||||
|
||||
You can use `docker compose` to start a TGI container and Llama Stack server container together.
|
||||
Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
|
||||
|
||||
```bash
|
||||
$ cd distributions/{{ name }}; docker compose up
|
||||
export TGI_INFERENCE_PORT=8080
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $TGI_INFERENCE_PORT:$TGI_INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $TGI_INFERENCE_PORT
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```bash
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5001 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```bash
|
||||
docker compose down
|
||||
```
|
||||
|
||||
|
||||
### Conda: TGI server + llama stack run
|
||||
|
||||
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### Start TGI server locally
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats on --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
export TGI_SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $TGI_SAFETY_PORT:$TGI_SAFETY_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--port $TGI_SAFETY_PORT
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
## Running Llama Stack with TGI as the inference provider
|
||||
|
||||
**Via Conda**
|
||||
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
--network host \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$TGI_INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
--network host \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$TGI_INFERENCE_PORT \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://host.docker.internal:$TGI_SAFETY_PORT
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
# -- start a TGI server endpoint
|
||||
llama stack run ./gpu/run.yaml
|
||||
llama stack run ./run.yaml
|
||||
--port 5001
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
--env TGI_URL=http://127.0.0.1:$TGI_INFERENCE_PORT
|
||||
```
|
||||
|
||||
**Via Docker**
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run --network host -it -p 5001:5001 \
|
||||
-v ./run.yaml:/root/my-run.yaml --gpus=all \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
We have provided a template `run.yaml` file in the `distributions/{{ name }}` directory. Make sure in your `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
To serve a new model with `tgi`, change the docker command flag `--model-id <model-to-serve>`.
|
||||
|
||||
This can be done by edit the `command` args in `compose.yaml`. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
|
||||
|
||||
```yaml
|
||||
command: >
|
||||
--dtype bfloat16 --usage-stats on --sharded false
|
||||
--model-id meta-llama/Llama-3.2-1B-Instruct
|
||||
--port 5009 --cuda-memory-fraction 0.7
|
||||
```
|
||||
|
||||
or by changing the docker run command's `--model-id` flag
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats off --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
```
|
||||
|
||||
In `run.yaml`, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
llama stack run ./run-with-safety.yaml
|
||||
--port 5001
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
--env TGI_URL=http://127.0.0.1:$TGI_INFERENCE_PORT
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL
|
||||
--env TGI_SAFETY_URL=http://127.0.0.1:$TGI_SAFETY_PORT
|
||||
```
|
||||
|
|
|
@ -60,7 +60,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_id="tgi-safety",
|
||||
provider_type="remote::tgi",
|
||||
config=TGIImplConfig.sample_run_config(
|
||||
url="${env.SAFETY_TGI_URL}",
|
||||
url="${env.TGI_SAFETY_URL}",
|
||||
),
|
||||
),
|
||||
],
|
||||
|
@ -72,7 +72,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
||||
),
|
||||
},
|
||||
docker_compose_env_vars={
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
|
@ -82,11 +82,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"Inference model loaded into the TGI server",
|
||||
),
|
||||
"TGI_URL": (
|
||||
"http://host.docker.internal:8080}/v1",
|
||||
"http://127.0.0.1:8080}/v1",
|
||||
"URL of the TGI server with the main inference model",
|
||||
),
|
||||
"SAFETY_TGI_URL": (
|
||||
"http://host.docker.internal:8081/v1",
|
||||
"TGI_SAFETY_URL": (
|
||||
"http://127.0.0.1:8081/v1",
|
||||
"URL of the TGI server with the safety model",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue