feat: Add openAI compatible APIs to Qdrant (#2465)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 15s
Test Llama Stack Build / generate-matrix (push) Successful in 9s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 19s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 13s
Test Llama Stack Build / build-single-provider (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 15s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 14s
Integration Tests (Replay) / discover-tests (push) Successful in 24s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 18s
Update ReadTheDocs / update-readthedocs (push) Failing after 12s
Unit Tests / unit-tests (3.12) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 16s
Python Package Build Test / build (3.12) (push) Failing after 20s
Python Package Build Test / build (3.13) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 18s
Test External API and Providers / test-external (venv) (push) Failing after 18s
Unit Tests / unit-tests (3.13) (push) Failing after 19s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 42s
Integration Tests (Replay) / run-replay-mode-tests (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 1m12s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 1m15s
Test Llama Stack Build / build (push) Failing after 32s
Pre-commit / pre-commit (push) Successful in 2m39s

# What does this PR do?
Adds support to Vector store Open AI APIs in Qdrant.

<!-- If resolving an issue, uncomment and update the line below -->
 Closes #2463 


## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
This commit is contained in:
Varsha 2025-07-31 21:41:34 -07:00 committed by GitHub
parent 194abe7734
commit 1f0766308d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 205 additions and 120 deletions

View file

@ -29,6 +29,8 @@ def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
"inline::chromadb",
"remote::pgvector",
"remote::chromadb",
"remote::qdrant",
"inline::qdrant",
"remote::weaviate",
]:
return

View file

@ -125,6 +125,8 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding
def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, embedding_model_id, embedding_dimension):
vector_io_provider_params_dict = {
"inline::milvus": {"score_threshold": -1.0},
"remote::qdrant": {"score_threshold": -1.0},
"inline::qdrant": {"score_threshold": -1.0},
}
vector_db_id = "test_precomputed_embeddings_db"
client_with_empty_registry.vector_dbs.register(
@ -168,6 +170,8 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
):
vector_io_provider_params_dict = {
"inline::milvus": {"score_threshold": 0.0},
"remote::qdrant": {"score_threshold": 0.0},
"inline::qdrant": {"score_threshold": 0.0},
}
vector_db_id = "test_precomputed_embeddings_db"
client_with_empty_registry.vector_dbs.register(

View file

@ -17,10 +17,12 @@ from llama_stack.providers.inline.vector_io.chroma.config import ChromaVectorIOC
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.inline.vector_io.faiss.faiss import FaissIndex, FaissVectorIOAdapter
from llama_stack.providers.inline.vector_io.milvus.config import MilvusVectorIOConfig, SqliteKVStoreConfig
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig
from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConfig
from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import SQLiteVecIndex, SQLiteVecVectorIOAdapter
from llama_stack.providers.remote.vector_io.chroma.chroma import ChromaIndex, ChromaVectorIOAdapter, maybe_await
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusIndex, MilvusVectorIOAdapter
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
EMBEDDING_DIMENSION = 384
COLLECTION_PREFIX = "test_collection"
@ -280,6 +282,57 @@ async def chroma_vec_adapter(chroma_vec_db_path, mock_inference_api, embedding_d
await adapter.shutdown()
@pytest.fixture
def qdrant_vec_db_path(tmp_path_factory):
import uuid
db_path = str(tmp_path_factory.getbasetemp() / f"test_qdrant_{uuid.uuid4()}.db")
return db_path
@pytest.fixture
async def qdrant_vec_adapter(qdrant_vec_db_path, mock_inference_api, embedding_dimension):
import uuid
config = QdrantVectorIOConfig(
db_path=qdrant_vec_db_path,
kvstore=SqliteKVStoreConfig(),
)
adapter = QdrantVectorIOAdapter(
config=config,
inference_api=mock_inference_api,
files_api=None,
)
collection_id = f"qdrant_test_collection_{uuid.uuid4()}"
await adapter.initialize()
await adapter.register_vector_db(
VectorDB(
identifier=collection_id,
provider_id="test_provider",
embedding_model="test_model",
embedding_dimension=embedding_dimension,
)
)
adapter.test_collection_id = collection_id
yield adapter
await adapter.shutdown()
@pytest.fixture
async def qdrant_vec_index(qdrant_vec_db_path, embedding_dimension):
import uuid
from qdrant_client import AsyncQdrantClient
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantIndex
client = AsyncQdrantClient(path=qdrant_vec_db_path)
collection_name = f"qdrant_test_collection_{uuid.uuid4()}"
index = QdrantIndex(client, collection_name)
yield index
await index.delete()
@pytest.fixture
def vector_io_adapter(vector_provider, request):
"""Returns the appropriate vector IO adapter based on the provider parameter."""
@ -288,6 +341,7 @@ def vector_io_adapter(vector_provider, request):
"faiss": "faiss_vec_adapter",
"sqlite_vec": "sqlite_vec_adapter",
"chroma": "chroma_vec_adapter",
"qdrant": "qdrant_vec_adapter",
}
return request.getfixturevalue(vector_provider_dict[vector_provider])

View file

@ -23,6 +23,7 @@ from llama_stack.providers.inline.vector_io.qdrant.config import (
from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
QdrantVectorIOAdapter,
)
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
# This test is a unit test for the QdrantVectorIOAdapter class. This should only contain
# tests which are specific to this class. More general (API-level) tests should be placed in
@ -36,7 +37,8 @@ from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
@pytest.fixture
def qdrant_config(tmp_path) -> InlineQdrantVectorIOConfig:
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"))
kvstore_config = SqliteKVStoreConfig(db_name=os.path.join(tmp_path, "test_kvstore.db"))
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"), kvstore=kvstore_config)
@pytest.fixture(scope="session")
@ -50,6 +52,9 @@ def mock_vector_db(vector_db_id) -> MagicMock:
mock_vector_db.embedding_model = "embedding_model"
mock_vector_db.identifier = vector_db_id
mock_vector_db.embedding_dimension = 384
mock_vector_db.model_dump_json.return_value = (
'{"identifier": "' + vector_db_id + '", "embedding_model": "embedding_model", "embedding_dimension": 384}'
)
return mock_vector_db
@ -69,7 +74,7 @@ def mock_api_service(sample_embeddings):
@pytest.fixture
async def qdrant_adapter(qdrant_config, mock_vector_db_store, mock_api_service, loop) -> QdrantVectorIOAdapter:
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service)
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service, files_api=None)
adapter.vector_db_store = mock_vector_db_store
await adapter.initialize()
yield adapter