Add cache for PGVector memory adapter

Signed-off-by: Martin Hickey <martin.hickey@ie.ibm.com>
This commit is contained in:
Martin Hickey 2024-11-19 15:32:54 +00:00
parent e8112b31ab
commit 1f3f0f9f4f
3 changed files with 203 additions and 0 deletions

View file

@ -7,9 +7,18 @@
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
@json_schema_type
class PGVectorConfig(BaseModel):
kvstore: KVStoreConfig = SqliteKVStoreConfig(
db_path=(RUNTIME_BASE_DIR / "pgvector_store.db").as_posix()
) # Uses SQLite config specific to PGVector storage
host: str = Field(default="localhost")
port: int = Field(default=5432)
db: str = Field(default="postgres")

View file

@ -16,6 +16,7 @@ from pydantic import BaseModel, parse_obj_as
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.memory.vector_store import (
ALL_MINILM_L6_V2_DIMENSION,
BankWithIndex,
@ -24,6 +25,8 @@ from llama_stack.providers.utils.memory.vector_store import (
from .config import PGVectorConfig
MEMORY_BANKS_PREFIX = "memory_banks:"
def check_extension_version(cur):
cur.execute("SELECT extversion FROM pg_extension WHERE extname = 'vector'")
@ -122,6 +125,7 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
self.cursor = None
self.conn = None
self.cache = {}
self.kvstore = None
async def initialize(self) -> None:
print(f"Initializing PGVector memory adapter with config: {self.config}")
@ -156,6 +160,19 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
traceback.print_exc()
raise RuntimeError("Could not connect to PGVector database server") from e
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing banks from kvstore
start_key = MEMORY_BANKS_PREFIX
end_key = f"{MEMORY_BANKS_PREFIX}\xff"
stored_banks = await self.kvstore.range(start_key, end_key)
for bank_data in stored_banks:
bank = VectorMemoryBank.model_validate_json(bank_data)
index = BankWithIndex(
bank=bank, index=PGVectorIndex(ALL_MINILM_L6_V2_DIMENSION)
)
self.cache[bank.identifier] = index
async def shutdown(self) -> None:
pass
@ -167,6 +184,11 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
print("Inregister_memory_bank()")
print(f"cursor: {self.cursor}")
print(f"connection: {self.cursor.connection}")
print(f"encoding: {self.cursor.connection.encoding.encode}")
upsert_models(
self.cursor,
[
@ -174,6 +196,14 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
],
)
# Store in kvstore
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
await self.kvstore.set(
key=key,
value=memory_bank.json(),
)
# Store in cache
index = BankWithIndex(
bank=memory_bank,
index=PGVectorIndex(memory_bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),