mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-01 16:24:44 +00:00
Add cache for PGVector memory adapter
Signed-off-by: Martin Hickey <martin.hickey@ie.ibm.com>
This commit is contained in:
parent
e8112b31ab
commit
1f3f0f9f4f
3 changed files with 203 additions and 0 deletions
|
@ -7,9 +7,18 @@
|
||||||
from llama_models.schema_utils import json_schema_type
|
from llama_models.schema_utils import json_schema_type
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
|
||||||
|
from llama_stack.providers.utils.kvstore.config import (
|
||||||
|
KVStoreConfig,
|
||||||
|
SqliteKVStoreConfig,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class PGVectorConfig(BaseModel):
|
class PGVectorConfig(BaseModel):
|
||||||
|
kvstore: KVStoreConfig = SqliteKVStoreConfig(
|
||||||
|
db_path=(RUNTIME_BASE_DIR / "pgvector_store.db").as_posix()
|
||||||
|
) # Uses SQLite config specific to PGVector storage
|
||||||
host: str = Field(default="localhost")
|
host: str = Field(default="localhost")
|
||||||
port: int = Field(default=5432)
|
port: int = Field(default=5432)
|
||||||
db: str = Field(default="postgres")
|
db: str = Field(default="postgres")
|
||||||
|
|
|
@ -16,6 +16,7 @@ from pydantic import BaseModel, parse_obj_as
|
||||||
from llama_stack.apis.memory import * # noqa: F403
|
from llama_stack.apis.memory import * # noqa: F403
|
||||||
|
|
||||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||||
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||||
from llama_stack.providers.utils.memory.vector_store import (
|
from llama_stack.providers.utils.memory.vector_store import (
|
||||||
ALL_MINILM_L6_V2_DIMENSION,
|
ALL_MINILM_L6_V2_DIMENSION,
|
||||||
BankWithIndex,
|
BankWithIndex,
|
||||||
|
@ -24,6 +25,8 @@ from llama_stack.providers.utils.memory.vector_store import (
|
||||||
|
|
||||||
from .config import PGVectorConfig
|
from .config import PGVectorConfig
|
||||||
|
|
||||||
|
MEMORY_BANKS_PREFIX = "memory_banks:"
|
||||||
|
|
||||||
|
|
||||||
def check_extension_version(cur):
|
def check_extension_version(cur):
|
||||||
cur.execute("SELECT extversion FROM pg_extension WHERE extname = 'vector'")
|
cur.execute("SELECT extversion FROM pg_extension WHERE extname = 'vector'")
|
||||||
|
@ -122,6 +125,7 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||||
self.cursor = None
|
self.cursor = None
|
||||||
self.conn = None
|
self.conn = None
|
||||||
self.cache = {}
|
self.cache = {}
|
||||||
|
self.kvstore = None
|
||||||
|
|
||||||
async def initialize(self) -> None:
|
async def initialize(self) -> None:
|
||||||
print(f"Initializing PGVector memory adapter with config: {self.config}")
|
print(f"Initializing PGVector memory adapter with config: {self.config}")
|
||||||
|
@ -156,6 +160,19 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
raise RuntimeError("Could not connect to PGVector database server") from e
|
raise RuntimeError("Could not connect to PGVector database server") from e
|
||||||
|
|
||||||
|
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||||
|
# Load existing banks from kvstore
|
||||||
|
start_key = MEMORY_BANKS_PREFIX
|
||||||
|
end_key = f"{MEMORY_BANKS_PREFIX}\xff"
|
||||||
|
stored_banks = await self.kvstore.range(start_key, end_key)
|
||||||
|
|
||||||
|
for bank_data in stored_banks:
|
||||||
|
bank = VectorMemoryBank.model_validate_json(bank_data)
|
||||||
|
index = BankWithIndex(
|
||||||
|
bank=bank, index=PGVectorIndex(ALL_MINILM_L6_V2_DIMENSION)
|
||||||
|
)
|
||||||
|
self.cache[bank.identifier] = index
|
||||||
|
|
||||||
async def shutdown(self) -> None:
|
async def shutdown(self) -> None:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@ -167,6 +184,11 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||||
|
|
||||||
|
print("Inregister_memory_bank()")
|
||||||
|
print(f"cursor: {self.cursor}")
|
||||||
|
print(f"connection: {self.cursor.connection}")
|
||||||
|
print(f"encoding: {self.cursor.connection.encoding.encode}")
|
||||||
|
|
||||||
upsert_models(
|
upsert_models(
|
||||||
self.cursor,
|
self.cursor,
|
||||||
[
|
[
|
||||||
|
@ -174,6 +196,14 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Store in kvstore
|
||||||
|
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
|
||||||
|
await self.kvstore.set(
|
||||||
|
key=key,
|
||||||
|
value=memory_bank.json(),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store in cache
|
||||||
index = BankWithIndex(
|
index = BankWithIndex(
|
||||||
bank=memory_bank,
|
bank=memory_bank,
|
||||||
index=PGVectorIndex(memory_bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
index=PGVectorIndex(memory_bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||||
|
|
164
llama_stack/providers/tests/memory/test_pgvector.py
Normal file
164
llama_stack/providers/tests/memory/test_pgvector.py
Normal file
|
@ -0,0 +1,164 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import tempfile
|
||||||
|
from typing import List, Tuple
|
||||||
|
from unittest import mock
|
||||||
|
from unittest.mock import patch
|
||||||
|
|
||||||
|
import psycopg2
|
||||||
|
import pytest
|
||||||
|
from psycopg2 import sql
|
||||||
|
from psycopg2.extras import execute_values, Json
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from llama_stack.apis.memory import MemoryBankType, VectorMemoryBank
|
||||||
|
from llama_stack.providers.remote.memory.pgvector.config import PGVectorConfig
|
||||||
|
from llama_stack.providers.remote.memory.pgvector.pgvector import (
|
||||||
|
PGVectorIndex,
|
||||||
|
PGVectorMemoryAdapter,
|
||||||
|
)
|
||||||
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||||
|
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||||
|
from llama_stack.providers.utils.memory.vector_store import (
|
||||||
|
ALL_MINILM_L6_V2_DIMENSION,
|
||||||
|
BankWithIndex,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
TEST_MEMORY_BANKS_PREFIX = "test_memory_banks:"
|
||||||
|
|
||||||
|
|
||||||
|
@mock.patch("psycopg2.connect")
|
||||||
|
async def _noop_pgvectormemoryadapter_initialize(self, mock_connect):
|
||||||
|
print("Running _noop_pgvectormemoryadapter_initialize()")
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.conn = psycopg2.connect(client_encoding="utf8")
|
||||||
|
self.conn.autocommit = True
|
||||||
|
self.cursor = self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
|
||||||
|
# self.cursor.connection.set_client_encoding({"encoding": "UTF8"})
|
||||||
|
|
||||||
|
print(f"cursor: {self.cursor}")
|
||||||
|
print(f"connection: {self.cursor.connection}")
|
||||||
|
print(f"encoding: {self.cursor.connection.encoding}")
|
||||||
|
|
||||||
|
self.cursor.execute(
|
||||||
|
"""
|
||||||
|
CREATE TABLE IF NOT EXISTS metadata_store (
|
||||||
|
key TEXT PRIMARY KEY,
|
||||||
|
data JSONB
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
raise RuntimeError("Could not connect to PGVector database server") from e
|
||||||
|
|
||||||
|
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||||
|
# Load existing banks from kvstore
|
||||||
|
start_key = TEST_MEMORY_BANKS_PREFIX
|
||||||
|
end_key = f"{TEST_MEMORY_BANKS_PREFIX}\xff"
|
||||||
|
stored_banks = await self.kvstore.range(start_key, end_key)
|
||||||
|
|
||||||
|
for bank_data in stored_banks:
|
||||||
|
bank = VectorMemoryBank.model_validate_json(bank_data)
|
||||||
|
index = BankWithIndex(
|
||||||
|
bank=bank, index=PGVectorIndex(ALL_MINILM_L6_V2_DIMENSION)
|
||||||
|
)
|
||||||
|
self.cache[bank.identifier] = index
|
||||||
|
|
||||||
|
|
||||||
|
@mock.patch("psycopg2.connect")
|
||||||
|
def _noop_upsert_models(cur, keys_models: List[Tuple[str, BaseModel]], mock_connect):
|
||||||
|
print("Running _noop_upsert_models()")
|
||||||
|
conn = psycopg2.connect("")
|
||||||
|
conn.autocommit = True
|
||||||
|
cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
|
||||||
|
cursor.connection.set_client_encoding("UTF8")
|
||||||
|
|
||||||
|
print(f"cursor: {cursor}")
|
||||||
|
print(f"connection: {cursor.connection}")
|
||||||
|
print(f"encoding: {cursor.connection.encoding}")
|
||||||
|
|
||||||
|
query = sql.SQL(
|
||||||
|
"""
|
||||||
|
INSERT INTO metadata_store (key, data)
|
||||||
|
VALUES %s
|
||||||
|
ON CONFLICT (key) DO UPDATE
|
||||||
|
SET data = EXCLUDED.data
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
|
||||||
|
values = [(key, Json(model.dict())) for key, model in keys_models]
|
||||||
|
execute_values(cursor, query, values, template="(%s, %s)")
|
||||||
|
|
||||||
|
|
||||||
|
@patch.object(
|
||||||
|
PGVectorMemoryAdapter, "initialize", _noop_pgvectormemoryadapter_initialize
|
||||||
|
)
|
||||||
|
# @patch("llama_stack.providers.remote.memory.pgvector.pgvector.upsert_models", _noop_upsert_models)
|
||||||
|
class TestPGVectorMemoryAdapter:
|
||||||
|
@pytest.fixture
|
||||||
|
def pgvector_memory_adapter(self):
|
||||||
|
# Create a temporary SQLite database file
|
||||||
|
temp_db = tempfile.NamedTemporaryFile(suffix=".db", delete=False)
|
||||||
|
config = PGVectorConfig(kvstore=SqliteKVStoreConfig(db_path=temp_db.name))
|
||||||
|
return PGVectorMemoryAdapter(config)
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_initialize(self, pgvector_memory_adapter):
|
||||||
|
# Test empty initialization
|
||||||
|
await pgvector_memory_adapter.initialize()
|
||||||
|
assert len(pgvector_memory_adapter.cache) == 0
|
||||||
|
|
||||||
|
# Test initialization with existing banks
|
||||||
|
bank = VectorMemoryBank(
|
||||||
|
identifier="test_bank",
|
||||||
|
provider_id="",
|
||||||
|
memory_bank_type=MemoryBankType.vector.value,
|
||||||
|
embedding_model="all-MiniLM-L6-v2",
|
||||||
|
chunk_size_in_tokens=512,
|
||||||
|
overlap_size_in_tokens=64,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Register a bank and reinitialize to test loading
|
||||||
|
await pgvector_memory_adapter.register_memory_bank(bank)
|
||||||
|
|
||||||
|
# Create new instance to test initialization with existing data
|
||||||
|
new_mem_adpt = PGVectorMemoryAdapter(pgvector_memory_adapter.config)
|
||||||
|
await new_mem_adpt.initialize()
|
||||||
|
|
||||||
|
assert len(new_mem_adpt.cache) == 1
|
||||||
|
assert "test_bank" in new_mem_adpt.cache
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_register_memory_bank(self, pgvector_memory_adapter):
|
||||||
|
bank = VectorMemoryBank(
|
||||||
|
identifier="test_bank",
|
||||||
|
provider_id="",
|
||||||
|
memory_bank_type=MemoryBankType.vector.value,
|
||||||
|
embedding_model="all-MiniLM-L6-v2",
|
||||||
|
chunk_size_in_tokens=512,
|
||||||
|
overlap_size_in_tokens=64,
|
||||||
|
)
|
||||||
|
|
||||||
|
await pgvector_memory_adapter.initialize()
|
||||||
|
await pgvector_memory_adapter.register_memory_bank(bank)
|
||||||
|
|
||||||
|
assert "test_bank" in pgvector_memory_adapter.cache
|
||||||
|
assert pgvector_memory_adapter.cache["test_bank"].bank == bank
|
||||||
|
|
||||||
|
# Verify persistence
|
||||||
|
new_mem_adpt = PGVectorMemoryAdapter(pgvector_memory_adapter.config)
|
||||||
|
await new_mem_adpt.initialize()
|
||||||
|
assert "test_bank" in new_mem_adpt.cache
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
pytest.main([__file__])
|
Loading…
Add table
Add a link
Reference in a new issue