diff --git a/llama_stack/providers/registry/tool_runtime.py b/llama_stack/providers/registry/tool_runtime.py index ad8c31dfd..39dc7fccd 100644 --- a/llama_stack/providers/registry/tool_runtime.py +++ b/llama_stack/providers/registry/tool_runtime.py @@ -11,6 +11,7 @@ from llama_stack.providers.datatypes import ( ProviderSpec, RemoteProviderSpec, ) +from llama_stack.providers.registry.vector_io import DEFAULT_VECTOR_IO_DEPS def available_providers() -> list[ProviderSpec]: @@ -18,9 +19,8 @@ def available_providers() -> list[ProviderSpec]: InlineProviderSpec( api=Api.tool_runtime, provider_type="inline::rag-runtime", - pip_packages=[ - "chardet", - "pypdf", + pip_packages=DEFAULT_VECTOR_IO_DEPS + + [ "tqdm", "numpy", "scikit-learn", diff --git a/llama_stack/providers/registry/vector_io.py b/llama_stack/providers/registry/vector_io.py index ebab7aaf9..da2a68535 100644 --- a/llama_stack/providers/registry/vector_io.py +++ b/llama_stack/providers/registry/vector_io.py @@ -12,13 +12,16 @@ from llama_stack.providers.datatypes import ( RemoteProviderSpec, ) +# Common dependencies for all vector IO providers that support document processing +DEFAULT_VECTOR_IO_DEPS = ["chardet", "pypdf"] + def available_providers() -> list[ProviderSpec]: return [ InlineProviderSpec( api=Api.vector_io, provider_type="inline::meta-reference", - pip_packages=["faiss-cpu"], + pip_packages=["faiss-cpu"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.inline.vector_io.faiss", config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig", deprecation_warning="Please use the `inline::faiss` provider instead.", @@ -29,7 +32,7 @@ def available_providers() -> list[ProviderSpec]: InlineProviderSpec( api=Api.vector_io, provider_type="inline::faiss", - pip_packages=["faiss-cpu"], + pip_packages=["faiss-cpu"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.inline.vector_io.faiss", config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig", api_dependencies=[Api.inference], @@ -82,7 +85,7 @@ more details about Faiss in general. InlineProviderSpec( api=Api.vector_io, provider_type="inline::sqlite-vec", - pip_packages=["sqlite-vec"], + pip_packages=["sqlite-vec"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.inline.vector_io.sqlite_vec", config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig", api_dependencies=[Api.inference], @@ -289,7 +292,7 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f InlineProviderSpec( api=Api.vector_io, provider_type="inline::sqlite_vec", - pip_packages=["sqlite-vec"], + pip_packages=["sqlite-vec"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.inline.vector_io.sqlite_vec", config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig", deprecation_warning="Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.", @@ -303,7 +306,7 @@ Please refer to the sqlite-vec provider documentation. api=Api.vector_io, adapter_type="chromadb", provider_type="remote::chromadb", - pip_packages=["chromadb-client"], + pip_packages=["chromadb-client"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.remote.vector_io.chroma", config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig", api_dependencies=[Api.inference], @@ -345,7 +348,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti InlineProviderSpec( api=Api.vector_io, provider_type="inline::chromadb", - pip_packages=["chromadb"], + pip_packages=["chromadb"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.inline.vector_io.chroma", config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig", api_dependencies=[Api.inference], @@ -389,7 +392,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti api=Api.vector_io, adapter_type="pgvector", provider_type="remote::pgvector", - pip_packages=["psycopg2-binary"], + pip_packages=["psycopg2-binary"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.remote.vector_io.pgvector", config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig", api_dependencies=[Api.inference], @@ -500,7 +503,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de api=Api.vector_io, adapter_type="weaviate", provider_type="remote::weaviate", - pip_packages=["weaviate-client>=4.16.5"], + pip_packages=["weaviate-client>=4.16.5"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.remote.vector_io.weaviate", config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig", provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData", @@ -541,7 +544,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more InlineProviderSpec( api=Api.vector_io, provider_type="inline::qdrant", - pip_packages=["qdrant-client"], + pip_packages=["qdrant-client"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.inline.vector_io.qdrant", config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig", api_dependencies=[Api.inference], @@ -594,7 +597,7 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta api=Api.vector_io, adapter_type="qdrant", provider_type="remote::qdrant", - pip_packages=["qdrant-client"], + pip_packages=["qdrant-client"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.remote.vector_io.qdrant", config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig", api_dependencies=[Api.inference], @@ -607,7 +610,7 @@ Please refer to the inline provider documentation. api=Api.vector_io, adapter_type="milvus", provider_type="remote::milvus", - pip_packages=["pymilvus>=2.4.10"], + pip_packages=["pymilvus>=2.4.10"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.remote.vector_io.milvus", config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig", api_dependencies=[Api.inference], @@ -813,7 +816,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi InlineProviderSpec( api=Api.vector_io, provider_type="inline::milvus", - pip_packages=["pymilvus[milvus-lite]>=2.4.10"], + pip_packages=["pymilvus[milvus-lite]>=2.4.10"] + DEFAULT_VECTOR_IO_DEPS, module="llama_stack.providers.inline.vector_io.milvus", config_class="llama_stack.providers.inline.vector_io.milvus.MilvusVectorIOConfig", api_dependencies=[Api.inference],