mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-31 16:01:46 +00:00
fix: sqlite_vec keyword implementation
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
parent
e2a7022d3c
commit
2060fdba7f
14 changed files with 146 additions and 101 deletions
7
docs/_static/llama-stack-spec.html
vendored
7
docs/_static/llama-stack-spec.html
vendored
|
@ -11601,7 +11601,6 @@
|
|||
},
|
||||
"max_chunks": {
|
||||
"type": "integer",
|
||||
<<<<<<< HEAD
|
||||
"default": 5,
|
||||
"description": "Maximum number of chunks to retrieve."
|
||||
},
|
||||
|
@ -11609,12 +11608,10 @@
|
|||
"type": "string",
|
||||
"default": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
|
||||
"description": "Template for formatting each retrieved chunk in the context. Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict). Default: \"Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n\""
|
||||
=======
|
||||
"default": 5
|
||||
},
|
||||
"mode": {
|
||||
"type": "string"
|
||||
>>>>>>> 1a0433d2 (feat (RAG): Implement configurable search mode in RAGQueryConfig)
|
||||
"type": "string",
|
||||
"description": "Search mode for retrieval—either \"vector\" or \"keyword\"."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
|
5
docs/_static/llama-stack-spec.yaml
vendored
5
docs/_static/llama-stack-spec.yaml
vendored
|
@ -8072,7 +8072,6 @@ components:
|
|||
max_chunks:
|
||||
type: integer
|
||||
default: 5
|
||||
<<<<<<< HEAD
|
||||
description: Maximum number of chunks to retrieve.
|
||||
chunk_template:
|
||||
type: string
|
||||
|
@ -8087,10 +8086,10 @@ components:
|
|||
placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk
|
||||
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
|
||||
{chunk.content}\nMetadata: {metadata}\n"
|
||||
=======
|
||||
mode:
|
||||
type: string
|
||||
>>>>>>> 1a0433d2 (feat (RAG): Implement configurable search mode in RAGQueryConfig)
|
||||
description: >-
|
||||
Search mode for retrieval—either "vector" or "keyword".
|
||||
additionalProperties: false
|
||||
required:
|
||||
- query_generator_config
|
||||
|
|
|
@ -70,7 +70,7 @@ To use sqlite-vec in your Llama Stack project, follow these steps:
|
|||
|
||||
The sqlite-vec provider supports both vector-based and keyword-based (full-text) search modes.
|
||||
|
||||
When using the RAGTool interface, you can specify the desired search behavior via the search_mode parameter in
|
||||
When using the RAGTool interface, you can specify the desired search behavior via the `mode` parameter in
|
||||
`RAGQueryConfig`. For example:
|
||||
|
||||
```python
|
||||
|
|
|
@ -76,6 +76,7 @@ class RAGQueryConfig(BaseModel):
|
|||
:param chunk_template: Template for formatting each retrieved chunk in the context.
|
||||
Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict).
|
||||
Default: "Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n"
|
||||
:param mode: Search mode for retrieval—either "vector" or "keyword".
|
||||
"""
|
||||
|
||||
# This config defines how a query is generated using the messages
|
||||
|
|
|
@ -99,13 +99,11 @@ class FaissIndex(EmbeddingIndex):
|
|||
# Save updated index
|
||||
await self._save_index()
|
||||
|
||||
async def query(
|
||||
async def query_vector(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
query_string: Optional[str],
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
mode: Optional[str],
|
||||
) -> QueryChunksResponse:
|
||||
distances, indices = await asyncio.to_thread(self.index.search, embedding.reshape(1, -1).astype(np.float32), k)
|
||||
chunks = []
|
||||
|
@ -118,6 +116,14 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(
|
||||
self,
|
||||
query_string: str | None,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in FAISS")
|
||||
|
||||
|
||||
class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference) -> None:
|
||||
|
|
|
@ -184,7 +184,7 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
|
||||
except sqlite3.Error as e:
|
||||
connection.rollback()
|
||||
logger.error(f"Error inserting chunk batch: {e}")
|
||||
logger.error(f"Error inserting into {self.vector_table}: {e}")
|
||||
raise
|
||||
|
||||
finally:
|
||||
|
@ -194,88 +194,99 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
# Run batch insertion in a background thread
|
||||
await asyncio.to_thread(_execute_all_batch_inserts)
|
||||
|
||||
async def query(
|
||||
async def query_vector(
|
||||
self,
|
||||
embedding: Optional[NDArray],
|
||||
query_string: Optional[str],
|
||||
embedding: NDArray,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
mode: Optional[str],
|
||||
) -> QueryChunksResponse:
|
||||
"""
|
||||
Supports both vector-based and keyword-based searches.
|
||||
|
||||
1. Vector Search (`mode=VECTOR_SEARCH`):
|
||||
Uses a virtual table for vector similarity, joined with metadata.
|
||||
|
||||
2. Keyword Search (`mode=KEYWORD_SEARCH`):
|
||||
Uses SQLite FTS5 for relevance-ranked full-text search.
|
||||
Performs vector-based search using a virtual table for vector similarity.
|
||||
"""
|
||||
if embedding is None:
|
||||
raise ValueError("embedding is required for vector search.")
|
||||
|
||||
def _execute_query():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
|
||||
try:
|
||||
if mode == VECTOR_SEARCH:
|
||||
if embedding is None:
|
||||
raise ValueError("embedding is required for vector search.")
|
||||
emb_list = embedding.tolist() if isinstance(embedding, np.ndarray) else list(embedding)
|
||||
emb_blob = serialize_vector(emb_list)
|
||||
|
||||
query_sql = f"""
|
||||
SELECT m.id, m.chunk, v.distance
|
||||
FROM {self.vector_table} AS v
|
||||
JOIN {self.metadata_table} AS m ON m.id = v.id
|
||||
WHERE v.embedding MATCH ? AND k = ?
|
||||
ORDER BY v.distance;
|
||||
"""
|
||||
cur.execute(query_sql, (emb_blob, k))
|
||||
|
||||
elif mode == KEYWORD_SEARCH:
|
||||
if query_string is None:
|
||||
raise ValueError("query_string is required for keyword search.")
|
||||
|
||||
query_sql = f"""
|
||||
SELECT DISTINCT m.id, m.chunk, bm25({self.fts_table}) AS score
|
||||
FROM {self.fts_table} AS f
|
||||
JOIN {self.metadata_table} AS m ON m.id = f.id
|
||||
WHERE f.content MATCH ?
|
||||
ORDER BY score ASC
|
||||
LIMIT ?;
|
||||
"""
|
||||
cur.execute(query_sql, (query_string, k))
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid search_mode: {mode} please select from {SEARCH_MODES}")
|
||||
|
||||
emb_list = embedding.tolist() if isinstance(embedding, np.ndarray) else list(embedding)
|
||||
emb_blob = serialize_vector(emb_list)
|
||||
query_sql = f"""
|
||||
SELECT m.id, m.chunk, v.distance
|
||||
FROM {self.vector_table} AS v
|
||||
JOIN {self.metadata_table} AS m ON m.id = v.id
|
||||
WHERE v.embedding MATCH ? AND k = ?
|
||||
ORDER BY v.distance;
|
||||
"""
|
||||
cur.execute(query_sql, (emb_blob, k))
|
||||
return cur.fetchall()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
rows = await asyncio.to_thread(_execute_query)
|
||||
|
||||
chunks, scores = [], []
|
||||
for row in rows:
|
||||
if mode == VECTOR_SEARCH:
|
||||
_id, chunk_json, distance = row
|
||||
score = 1.0 / distance if distance != 0 else float("inf")
|
||||
|
||||
if score < score_threshold:
|
||||
continue
|
||||
else:
|
||||
_id, chunk_json, score = row
|
||||
|
||||
_id, chunk_json, distance = row
|
||||
score = 1.0 / distance if distance != 0 else float("inf")
|
||||
if score < score_threshold:
|
||||
continue
|
||||
try:
|
||||
chunk = Chunk.model_validate_json(chunk_json)
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing chunk JSON for id {_id}: {e}")
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(score)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(
|
||||
self,
|
||||
query_string: str | None,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
"""
|
||||
Performs keyword-based search using SQLite FTS5 for relevance-ranked full-text search.
|
||||
"""
|
||||
if query_string is None:
|
||||
raise ValueError("query_string is required for keyword search.")
|
||||
|
||||
def _execute_query():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
query_sql = f"""
|
||||
SELECT DISTINCT m.id, m.chunk, bm25({self.fts_table}) AS score
|
||||
FROM {self.fts_table} AS f
|
||||
JOIN {self.metadata_table} AS m ON m.id = f.id
|
||||
WHERE f.content MATCH ?
|
||||
ORDER BY score ASC
|
||||
LIMIT ?;
|
||||
"""
|
||||
cur.execute(query_sql, (query_string, k))
|
||||
return cur.fetchall()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
rows = await asyncio.to_thread(_execute_query)
|
||||
chunks, scores = [], []
|
||||
for row in rows:
|
||||
_id, chunk_json, score = row
|
||||
# BM25 scores returned by sqlite-vec are NEGATED (i.e., more relevant = more negative).
|
||||
# This design is intentional to simplify sorting by ascending score.
|
||||
# Reference: https://alexgarcia.xyz/blog/2024/sqlite-vec-hybrid-search/index.html
|
||||
if score > -score_threshold:
|
||||
continue
|
||||
try:
|
||||
chunk = Chunk.model_validate_json(chunk_json)
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing chunk JSON for id {_id}: {e}")
|
||||
continue
|
||||
chunks.append(chunk)
|
||||
scores.append(score)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
|
|
|
@ -55,9 +55,7 @@ class ChromaIndex(EmbeddingIndex):
|
|||
)
|
||||
)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, query_string: Optional[str], k: int, score_threshold: float, mode: str
|
||||
) -> QueryChunksResponse:
|
||||
async def query(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
results = await maybe_await(
|
||||
self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
|
@ -86,6 +84,14 @@ class ChromaIndex(EmbeddingIndex):
|
|||
async def delete(self):
|
||||
await maybe_await(self.client.delete_collection(self.collection.name))
|
||||
|
||||
async def query_keyword(
|
||||
self,
|
||||
query_string: str | None,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Chroma")
|
||||
|
||||
|
||||
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
|
|
|
@ -73,9 +73,7 @@ class MilvusIndex(EmbeddingIndex):
|
|||
logger.error(f"Error inserting chunks into Milvus collection {self.collection_name}: {e}")
|
||||
raise e
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, query_str: Optional[str], k: int, score_threshold: float, mode: str
|
||||
) -> QueryChunksResponse:
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
search_res = await asyncio.to_thread(
|
||||
self.client.search,
|
||||
collection_name=self.collection_name,
|
||||
|
@ -88,6 +86,14 @@ class MilvusIndex(EmbeddingIndex):
|
|||
scores = [res["distance"] for res in search_res[0]]
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(
|
||||
self,
|
||||
query_string: str | None,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Milvus")
|
||||
|
||||
|
||||
class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
|
|
|
@ -99,9 +99,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
execute_values(cur, query, values, template="(%s, %s, %s::vector)")
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, query_string: Optional[str], k: int, score_threshold: float, mode: str
|
||||
) -> QueryChunksResponse:
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
f"""
|
||||
|
@ -122,6 +120,14 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(
|
||||
self,
|
||||
query_string: str | None,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in PGVector")
|
||||
|
||||
async def delete(self):
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
|
|
@ -68,9 +68,7 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
await self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, query_string: Optional[str], k: int, score_threshold: float, mode: str
|
||||
) -> QueryChunksResponse:
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
results = (
|
||||
await self.client.query_points(
|
||||
collection_name=self.collection_name,
|
||||
|
@ -97,6 +95,14 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_keyword(
|
||||
self,
|
||||
query_string: str | None,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Qdrant")
|
||||
|
||||
async def delete(self):
|
||||
await self.client.delete_collection(collection_name=self.collection_name)
|
||||
|
||||
|
|
|
@ -55,9 +55,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
# TODO: make this async friendly
|
||||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, query_string: Optional[str], k: int, score_threshold: float, mode: str
|
||||
) -> QueryChunksResponse:
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
||||
results = collection.query.near_vector(
|
||||
|
@ -86,6 +84,14 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
collection = self.client.collections.get(self.collection_name)
|
||||
collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids))
|
||||
|
||||
async def query_keyword(
|
||||
self,
|
||||
query_string: str | None,
|
||||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Weaviate")
|
||||
|
||||
|
||||
class WeaviateVectorIOAdapter(
|
||||
VectorIO,
|
||||
|
|
|
@ -177,9 +177,11 @@ class EmbeddingIndex(ABC):
|
|||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
async def query(
|
||||
self, embedding: NDArray, query_string: Optional[str], k: int, score_threshold: float, mode: Optional[str]
|
||||
) -> QueryChunksResponse:
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
async def query_keyword(self, query_string: str | None, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
|
@ -215,6 +217,9 @@ class VectorDBWithIndex:
|
|||
mode = params.get("mode")
|
||||
score_threshold = params.get("score_threshold", 0.0)
|
||||
query_string = interleaved_content_as_str(query)
|
||||
embeddings_response = await self.inference_api.embeddings(self.vector_db.embedding_model, [query_string])
|
||||
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
|
||||
return await self.index.query(query_vector, query_string, k, score_threshold, mode)
|
||||
if mode == "keyword":
|
||||
return await self.index.query_keyword(query_string, k, score_threshold)
|
||||
else:
|
||||
embeddings_response = await self.inference_api.embeddings(self.vector_db.embedding_model, [query_string])
|
||||
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
|
||||
return await self.index.query_vector(query_vector, k, score_threshold)
|
||||
|
|
|
@ -98,7 +98,7 @@ async def test_qdrant_adapter_returns_expected_chunks(
|
|||
response = await qdrant_adapter.query_chunks(
|
||||
query=__QUERY,
|
||||
vector_db_id=vector_db_id,
|
||||
params={"max_chunks": max_query_chunks},
|
||||
params={"max_chunks": max_query_chunks, "mode": "vector"},
|
||||
)
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == expected_chunks
|
||||
|
|
|
@ -60,7 +60,7 @@ async def test_add_chunks(sqlite_vec_index, sample_chunks, sample_embeddings):
|
|||
async def test_query_chunks_vector(sqlite_vec_index, sample_chunks, sample_embeddings, embedding_dimension):
|
||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||
response = await sqlite_vec_index.query(query_embedding, query_string="", k=2, score_threshold=0.0, mode="vector")
|
||||
response = await sqlite_vec_index.query_vector(query_embedding, k=2, score_threshold=0.0)
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 2
|
||||
|
||||
|
@ -70,16 +70,14 @@ async def test_query_chunks_full_text_search(sqlite_vec_index, sample_chunks, sa
|
|||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
query_string = "Sentence 5"
|
||||
response = await sqlite_vec_index.query(
|
||||
embedding=None, k=3, score_threshold=0.0, query_string=query_string, mode="keyword"
|
||||
)
|
||||
response = await sqlite_vec_index.query_keyword(k=3, score_threshold=0.0, query_string=query_string)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert len(response.chunks) == 3, f"Expected at least one result, but got {len(response.chunks)}"
|
||||
assert len(response.chunks) == 3, f"Expected three chunks, but got {len(response.chunks)}"
|
||||
|
||||
non_existent_query_str = "blablabla"
|
||||
response_no_results = await sqlite_vec_index.query(
|
||||
embedding=None, query_string=non_existent_query_str, k=1, score_threshold=0.0, mode="keyword"
|
||||
response_no_results = await sqlite_vec_index.query_keyword(
|
||||
query_string=non_existent_query_str, k=1, score_threshold=0.0
|
||||
)
|
||||
|
||||
assert isinstance(response_no_results, QueryChunksResponse)
|
||||
|
@ -92,12 +90,10 @@ async def test_query_chunks_full_text_search_k_greater_than_results(sqlite_vec_i
|
|||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||
|
||||
query_str = "Sentence 1 from document 0" # Should match only one chunk
|
||||
response = await sqlite_vec_index.query(
|
||||
embedding=None, k=5, score_threshold=0.0, query_string=query_str, mode="keyword"
|
||||
)
|
||||
response = await sqlite_vec_index.query_keyword(k=5, score_threshold=0.0, query_string=query_str)
|
||||
|
||||
assert isinstance(response, QueryChunksResponse)
|
||||
assert 0 < len(response.chunks) < 5, f"Expected <5 results but >0, got {len(response.chunks)}"
|
||||
assert 0 < len(response.chunks) < 5, f"Expected results between [1, 4], got {len(response.chunks)}"
|
||||
assert any("Sentence 1 from document 0" in chunk.content for chunk in response.chunks), "Expected chunk not found"
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue