mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 10:41:59 +00:00
OpenAPI Responses - move tests under tests/verifications
This moves the OpenAI Responses API tests under tests/verifications/openai_api/test_response.py and starts to wire them up to our verification suite, so that we can test multiple providers as well as OpenAI directly for the Responses API. Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
591e6a3972
commit
207224a811
14 changed files with 353 additions and 273 deletions
|
|
@ -75,11 +75,27 @@ class OpenAIResponseObject(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStream(BaseModel):
|
||||
class OpenAIResponseObjectStreamResponseCreated(BaseModel):
|
||||
response: OpenAIResponseObject
|
||||
type: Literal["response.created"] = "response.created"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
|
||||
response: OpenAIResponseObject
|
||||
type: Literal["response.completed"] = "response.completed"
|
||||
|
||||
|
||||
OpenAIResponseObjectStream = Annotated[
|
||||
Union[
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseObjectStream, name="OpenAIResponseObjectStream")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputMessageContentText(BaseModel):
|
||||
text: str
|
||||
|
|
@ -112,6 +128,7 @@ class OpenAIResponseInputMessage(BaseModel):
|
|||
@json_schema_type
|
||||
class OpenAIResponseInputToolWebSearch(BaseModel):
|
||||
type: Literal["web_search", "web_search_preview_2025_03_11"] = "web_search"
|
||||
# TODO: actually use search_context_size somewhere...
|
||||
search_context_size: Optional[str] = Field(default="medium", pattern="^low|medium|high$")
|
||||
# TODO: add user_location
|
||||
|
||||
|
|
|
|||
|
|
@ -33,6 +33,8 @@ from llama_stack.apis.openai_responses.openai_responses import (
|
|||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseOutput,
|
||||
OpenAIResponseOutputMessage,
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
|
|
@ -174,7 +176,8 @@ class OpenAIResponsesImpl(OpenAIResponses):
|
|||
for chunk_choice in chunk.choices:
|
||||
# TODO: this only works for text content
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
assistant_message = OpenAIAssistantMessageParam(content="".join(chat_response_content))
|
||||
chat_response = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
|
|
@ -219,7 +222,9 @@ class OpenAIResponsesImpl(OpenAIResponses):
|
|||
if stream:
|
||||
|
||||
async def async_response() -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
yield OpenAIResponseObjectStream(response=response)
|
||||
# TODO: response created should actually get emitted much earlier in the process
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=response)
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=response)
|
||||
|
||||
return async_response()
|
||||
|
||||
|
|
@ -270,40 +275,40 @@ class OpenAIResponsesImpl(OpenAIResponses):
|
|||
# Add the assistant message with tool_calls response to the messages list
|
||||
messages.append(choice.message)
|
||||
|
||||
# TODO: handle multiple tool calls
|
||||
tool_call = choice.message.tool_calls[0]
|
||||
tool_call_id = tool_call.id
|
||||
function = tool_call.function
|
||||
for tool_call in choice.message.tool_calls:
|
||||
tool_call_id = tool_call.id
|
||||
function = tool_call.function
|
||||
|
||||
# If for some reason the tool call doesn't have a function or id, we can't execute it
|
||||
if not function or not tool_call_id:
|
||||
return output_messages
|
||||
# If for some reason the tool call doesn't have a function or id, we can't execute it
|
||||
if not function or not tool_call_id:
|
||||
continue
|
||||
|
||||
# TODO: telemetry spans for tool calls
|
||||
result = await self._execute_tool_call(function)
|
||||
# TODO: telemetry spans for tool calls
|
||||
result = await self._execute_tool_call(function)
|
||||
|
||||
# Handle tool call failure
|
||||
if not result:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageWebSearchToolCall(
|
||||
id=tool_call_id,
|
||||
status="failed",
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
# Handle tool call failure
|
||||
if not result:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageWebSearchToolCall(
|
||||
id=tool_call_id,
|
||||
status="failed",
|
||||
)
|
||||
status="completed",
|
||||
),
|
||||
)
|
||||
return output_messages
|
||||
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageWebSearchToolCall(
|
||||
id=tool_call_id,
|
||||
status="completed",
|
||||
),
|
||||
)
|
||||
result_content = ""
|
||||
# TODO: handle other result content types and lists
|
||||
if isinstance(result.content, str):
|
||||
result_content = result.content
|
||||
messages.append(OpenAIToolMessageParam(content=result_content, tool_call_id=tool_call_id))
|
||||
|
||||
result_content = ""
|
||||
# TODO: handle other result content types and lists
|
||||
if isinstance(result.content, str):
|
||||
result_content = result.content
|
||||
messages.append(OpenAIToolMessageParam(content=result_content, tool_call_id=tool_call_id))
|
||||
tool_results_chat_response = await self.inference_api.openai_chat_completion(
|
||||
model=model_id,
|
||||
messages=messages,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue