mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 05:38:46 +00:00
OpenAPI Responses - move tests under tests/verifications
This moves the OpenAI Responses API tests under tests/verifications/openai_api/test_response.py and starts to wire them up to our verification suite, so that we can test multiple providers as well as OpenAI directly for the Responses API. Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
591e6a3972
commit
207224a811
14 changed files with 353 additions and 273 deletions
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
|
@ -1,83 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import pytest
|
||||
|
||||
from ..test_cases.test_case import TestCase
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"openai:responses:non_streaming_01",
|
||||
"openai:responses:non_streaming_02",
|
||||
],
|
||||
)
|
||||
def test_basic_non_streaming(openai_client, client_with_models, text_model_id, test_case):
|
||||
tc = TestCase(test_case)
|
||||
question = tc["question"]
|
||||
expected = tc["expected"]
|
||||
|
||||
response = openai_client.responses.create(
|
||||
model=text_model_id,
|
||||
input=question,
|
||||
stream=False,
|
||||
)
|
||||
output_text = response.output_text.lower().strip()
|
||||
assert len(output_text) > 0
|
||||
assert expected.lower() in output_text
|
||||
|
||||
retrieved_response = openai_client.responses.retrieve(response_id=response.id)
|
||||
assert retrieved_response.output_text == response.output_text
|
||||
|
||||
next_response = openai_client.responses.create(
|
||||
model=text_model_id, input="Repeat your previous response in all caps.", previous_response_id=response.id
|
||||
)
|
||||
next_output_text = next_response.output_text.strip()
|
||||
assert expected.upper() in next_output_text
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"openai:responses:streaming_01",
|
||||
"openai:responses:streaming_02",
|
||||
],
|
||||
)
|
||||
def test_basic_streaming(openai_client, client_with_models, text_model_id, test_case):
|
||||
tc = TestCase(test_case)
|
||||
question = tc["question"]
|
||||
expected = tc["expected"]
|
||||
|
||||
response = openai_client.responses.create(
|
||||
model=text_model_id,
|
||||
input=question,
|
||||
stream=True,
|
||||
timeout=120, # Increase timeout to 2 minutes for large conversation history
|
||||
)
|
||||
streamed_content = []
|
||||
response_id = ""
|
||||
for chunk in response:
|
||||
response_id = chunk.response.id
|
||||
streamed_content.append(chunk.response.output_text.strip())
|
||||
|
||||
assert len(streamed_content) > 0
|
||||
assert expected.lower() in "".join(streamed_content).lower()
|
||||
|
||||
retrieved_response = openai_client.responses.retrieve(response_id=response_id)
|
||||
assert retrieved_response.output_text == "".join(streamed_content)
|
||||
|
||||
next_response = openai_client.responses.create(
|
||||
model=text_model_id,
|
||||
input="Repeat your previous response in all caps.",
|
||||
previous_response_id=response_id,
|
||||
stream=True,
|
||||
)
|
||||
next_streamed_content = []
|
||||
for chunk in next_response:
|
||||
next_streamed_content.append(chunk.response.output_text.strip())
|
||||
assert expected.upper() in "".join(next_streamed_content)
|
||||
|
|
@ -1,101 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import pytest
|
||||
|
||||
from ..test_cases.test_case import TestCase
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"openai:responses:tools_web_search_01",
|
||||
],
|
||||
)
|
||||
def test_web_search_non_streaming(openai_client, client_with_models, text_model_id, test_case):
|
||||
tc = TestCase(test_case)
|
||||
input = tc["input"]
|
||||
expected = tc["expected"]
|
||||
tools = tc["tools"]
|
||||
|
||||
response = openai_client.responses.create(
|
||||
model=text_model_id,
|
||||
input=input,
|
||||
tools=tools,
|
||||
stream=False,
|
||||
)
|
||||
assert len(response.output) > 1
|
||||
assert response.output[0].type == "web_search_call"
|
||||
assert response.output[0].status == "completed"
|
||||
assert response.output[1].type == "message"
|
||||
assert response.output[1].status == "completed"
|
||||
assert response.output[1].role == "assistant"
|
||||
assert len(response.output[1].content) > 0
|
||||
assert expected.lower() in response.output_text.lower().strip()
|
||||
|
||||
|
||||
def test_input_image_non_streaming(openai_client, vision_model_id):
|
||||
supported_models = ["llama-4", "gpt-4o", "llama4"]
|
||||
if not any(model in vision_model_id.lower() for model in supported_models):
|
||||
pytest.skip(f"Skip for non-supported model: {vision_model_id}")
|
||||
|
||||
response = openai_client.with_options(max_retries=0).responses.create(
|
||||
model=vision_model_id,
|
||||
input=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "input_text",
|
||||
"text": "Identify the type of animal in this image.",
|
||||
},
|
||||
{
|
||||
"type": "input_image",
|
||||
"image_url": "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg",
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
)
|
||||
output_text = response.output_text.lower()
|
||||
assert "llama" in output_text
|
||||
|
||||
|
||||
def test_multi_turn_web_search_from_image_non_streaming(openai_client, vision_model_id):
|
||||
supported_models = ["llama-4", "gpt-4o", "llama4"]
|
||||
if not any(model in vision_model_id.lower() for model in supported_models):
|
||||
pytest.skip(f"Skip for non-supported model: {vision_model_id}")
|
||||
|
||||
response = openai_client.with_options(max_retries=0).responses.create(
|
||||
model=vision_model_id,
|
||||
input=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "input_text",
|
||||
"text": "Extract a single search keyword that represents the type of animal in this image.",
|
||||
},
|
||||
{
|
||||
"type": "input_image",
|
||||
"image_url": "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg",
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
)
|
||||
output_text = response.output_text.lower()
|
||||
assert "llama" in output_text
|
||||
|
||||
search_response = openai_client.with_options(max_retries=0).responses.create(
|
||||
model=vision_model_id,
|
||||
input="Search the web using the search tool for those keywords plus the words 'maverick' and 'scout' and summarize the results.",
|
||||
previous_response_id=response.id,
|
||||
tools=[{"type": "web_search"}],
|
||||
)
|
||||
output_text = search_response.output_text.lower()
|
||||
assert "model" in output_text
|
||||
Loading…
Add table
Add a link
Reference in a new issue