Merge branch 'main' into feat/litellm_sambanova_usage

This commit is contained in:
Jorge Piedrahita Ortiz 2025-05-06 09:56:22 -05:00 committed by GitHub
commit 21125f725f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
16 changed files with 301 additions and 182 deletions

View file

@ -55,6 +55,7 @@ Here's a list of known external providers that you can use with Llama Stack:
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
### Remote Provider Specification

View file

@ -27,5 +27,81 @@ You can install Milvus using pymilvus:
```bash
pip install pymilvus
```
## Configuration
In Llama Stack, Milvus can be configured in two ways:
- **Inline (Local) Configuration** - Uses Milvus-Lite for local storage
- **Remote Configuration** - Connects to a remote Milvus server
### Inline (Local) Configuration
The simplest method is local configuration, which requires setting `db_path`, a path for locally storing Milvus-Lite files:
```yaml
vector_io:
- provider_id: milvus
provider_type: inline::milvus
config:
db_path: ~/.llama/distributions/together/milvus_store.db
```
### Remote Configuration
Remote configuration is suitable for larger data storage requirements:
#### Standard Remote Connection
```yaml
vector_io:
- provider_id: milvus
provider_type: remote::milvus
config:
uri: "http://<host>:<port>"
token: "<user>:<password>"
```
#### TLS-Enabled Remote Connection (One-way TLS)
For connections to Milvus instances with one-way TLS enabled:
```yaml
vector_io:
- provider_id: milvus
provider_type: remote::milvus
config:
uri: "https://<host>:<port>"
token: "<user>:<password>"
secure: True
server_pem_path: "/path/to/server.pem"
```
#### Mutual TLS (mTLS) Remote Connection
For connections to Milvus instances with mutual TLS (mTLS) enabled:
```yaml
vector_io:
- provider_id: milvus
provider_type: remote::milvus
config:
uri: "https://<host>:<port>"
token: "<user>:<password>"
secure: True
ca_pem_path: "/path/to/ca.pem"
client_pem_path: "/path/to/client.pem"
client_key_path: "/path/to/client.key"
```
#### Key Parameters for TLS Configuration
- **`secure`**: Enables TLS encryption when set to `true`. Defaults to `false`.
- **`server_pem_path`**: Path to the **server certificate** for verifying the servers identity (used in one-way TLS).
- **`ca_pem_path`**: Path to the **Certificate Authority (CA) certificate** for validating the server certificate (required in mTLS).
- **`client_pem_path`**: Path to the **client certificate** file (required for mTLS).
- **`client_key_path`**: Path to the **client private key** file (required for mTLS).
## Documentation
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.
For more details on TLS configuration, refer to the [TLS setup guide](https://milvus.io/docs/tls.md).