mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 21:04:18 +00:00
Merge branch 'main' into nvidia-eval-integration
This commit is contained in:
commit
2117af25a7
27 changed files with 748 additions and 159 deletions
|
|
@ -46,20 +46,91 @@ The following models are available by default:
|
|||
- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `meta/llama-3.3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
|
||||
- `nvidia/nv-embedqa-e5-v5 `
|
||||
- `nvidia/nv-embedqa-mistral-7b-v2 `
|
||||
- `snowflake/arctic-embed-l `
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
## Prerequisites
|
||||
### NVIDIA API Keys
|
||||
|
||||
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/).
|
||||
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable.
|
||||
|
||||
### Deploy NeMo Microservices Platform
|
||||
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/documentation/latest/nemo-microservices/latest-early_access/set-up/deploy-as-platform/index.html) for platform prerequisites and instructions to install and deploy the platform.
|
||||
|
||||
## Supported Services
|
||||
Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints.
|
||||
|
||||
### Inference: NVIDIA NIM
|
||||
NVIDIA NIM is used for running inference with registered models. There are two ways to access NVIDIA NIMs:
|
||||
1. Hosted (default): Preview APIs hosted at https://integrate.api.nvidia.com (Requires an API key)
|
||||
2. Self-hosted: NVIDIA NIMs that run on your own infrastructure.
|
||||
|
||||
The deployed platform includes the NIM Proxy microservice, which is the service that provides to access your NIMs (for example, to run inference on a model). Set the `NVIDIA_BASE_URL` environment variable to use your NVIDIA NIM Proxy deployment.
|
||||
|
||||
### Datasetio API: NeMo Data Store
|
||||
The NeMo Data Store microservice serves as the default file storage solution for the NeMo microservices platform. It exposts APIs compatible with the Hugging Face Hub client (`HfApi`), so you can use the client to interact with Data Store. The `NVIDIA_DATASETS_URL` environment variable should point to your NeMo Data Store endpoint.
|
||||
|
||||
See the [NVIDIA Datasetio docs](/llama_stack/providers/remote/datasetio/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Eval API: NeMo Evaluator
|
||||
The NeMo Evaluator microservice supports evaluation of LLMs. Launching an Evaluation job with NeMo Evaluator requires an Evaluation Config (an object that contains metadata needed by the job). A Llama Stack Benchmark maps to an Evaluation Config, so registering a Benchmark creates an Evaluation Config in NeMo Evaluator. The `NVIDIA_EVALUATOR_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the [NVIDIA Eval docs](/llama_stack/providers/remote/eval/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Post-Training API: NeMo Customizer
|
||||
The NeMo Customizer microservice supports fine-tuning models. You can reference [this list of supported models](/llama_stack/providers/remote/post_training/nvidia/models.py) that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the [NVIDIA Post-Training docs](/llama_stack/providers/remote/post_training/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Safety API: NeMo Guardrails
|
||||
The NeMo Guardrails microservice sits between your application and the LLM, and adds checks and content moderation to a model. The `GUARDRAILS_SERVICE_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the NVIDIA Safety docs for supported features and example usage.
|
||||
|
||||
## Deploying models
|
||||
In order to use a registered model with the Llama Stack APIs, ensure the corresponding NIM is deployed to your environment. For example, you can use the NIM Proxy microservice to deploy `meta/llama-3.2-1b-instruct`.
|
||||
|
||||
Note: For improved inference speeds, we need to use NIM with `fast_outlines` guided decoding system (specified in the request body). This is the default if you deployed the platform with the NeMo Microservices Helm Chart.
|
||||
```sh
|
||||
# URL to NeMo NIM Proxy service
|
||||
export NEMO_URL="http://nemo.test"
|
||||
|
||||
curl --location "$NEMO_URL/v1/deployment/model-deployments" \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"name": "llama-3.2-1b-instruct",
|
||||
"namespace": "meta",
|
||||
"config": {
|
||||
"model": "meta/llama-3.2-1b-instruct",
|
||||
"nim_deployment": {
|
||||
"image_name": "nvcr.io/nim/meta/llama-3.2-1b-instruct",
|
||||
"image_tag": "1.8.3",
|
||||
"pvc_size": "25Gi",
|
||||
"gpu": 1,
|
||||
"additional_envs": {
|
||||
"NIM_GUIDED_DECODING_BACKEND": "fast_outlines"
|
||||
}
|
||||
}
|
||||
}
|
||||
}'
|
||||
```
|
||||
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/documentation/latest/nemo-microservices/latest-early_access/get-started/tutorials/deploy-nims.html#) for more information on how to deploy a NIM and verify it's available for inference.
|
||||
|
||||
You can also remove a deployed NIM to free up GPU resources, if needed.
|
||||
```sh
|
||||
export NEMO_URL="http://nemo.test"
|
||||
|
||||
curl -X DELETE "$NEMO_URL/v1/deployment/model-deployments/meta/llama-3.1-8b-instruct"
|
||||
```
|
||||
|
||||
## Running Llama Stack with NVIDIA
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
You can do this via Conda or venv (build code), or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
|
|
@ -81,9 +152,27 @@ docker run \
|
|||
### Via Conda
|
||||
|
||||
```bash
|
||||
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
|
||||
llama stack build --template nvidia --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
||||
### Via venv
|
||||
|
||||
If you've set up your local development environment, you can also build the image using your local virtual environment.
|
||||
|
||||
```bash
|
||||
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
|
||||
llama stack build --template nvidia --image-type venv
|
||||
llama stack run ./run.yaml \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
||||
### Example Notebooks
|
||||
You can reference the Jupyter notebooks in `docs/notebooks/nvidia/` for example usage of these APIs.
|
||||
- [Llama_Stack_NVIDIA_E2E_Flow.ipynb](/docs/notebooks/nvidia/Llama_Stack_NVIDIA_E2E_Flow.ipynb) contains an end-to-end workflow for running inference, customizing, and evaluating models using your deployed NeMo Microservices platform.
|
||||
|
|
|
|||
|
|
@ -41,7 +41,7 @@ The following environment variables can be configured:
|
|||
|
||||
## Setting up vLLM server
|
||||
|
||||
In the following sections, we'll use either AMD and NVIDIA GPUs to serve as hardware accelerators for the vLLM
|
||||
In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM
|
||||
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
|
||||
[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and
|
||||
that we only use GPUs here for demonstration purposes.
|
||||
|
|
@ -162,6 +162,55 @@ docker run \
|
|||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
### Setting up vLLM server on Intel GPU
|
||||
|
||||
Refer to [vLLM Documentation for XPU](https://docs.vllm.ai/en/v0.8.2/getting_started/installation/gpu.html?device=xpu) to get a vLLM endpoint. In addition to vLLM side setup which guides towards installing vLLM from sources orself-building vLLM Docker container, Intel provides prebuilt vLLM container to use on systems with Intel GPUs supported by PyTorch XPU backend:
|
||||
- [intel/vllm](https://hub.docker.com/r/intel/vllm)
|
||||
|
||||
Here is a sample script to start a vLLM server locally via Docker using Intel provided container:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
|
||||
export ZE_AFFINITY_MASK=0
|
||||
|
||||
docker run \
|
||||
--pull always \
|
||||
--device /dev/dri \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--ipc=host \
|
||||
intel/vllm:xpu \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export ZE_AFFINITY_MASK=1
|
||||
|
||||
docker run \
|
||||
--pull always \
|
||||
--device /dev/dri \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--ipc=host \
|
||||
intel/vllm:xpu \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue