[Feat] Implement keyword search in Qdrant

This commit implements keyword search in Qdrant.

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
Varsha Prasad Narsing 2025-08-11 15:32:00 -07:00
parent ef02b9ea10
commit 21211e8f67
4 changed files with 156 additions and 23 deletions

View file

@ -145,3 +145,89 @@ async def test_qdrant_register_and_unregister_vector_db(
await qdrant_adapter.unregister_vector_db(vector_db_id)
assert not (await qdrant_adapter.client.collection_exists(vector_db_id))
assert len((await qdrant_adapter.client.get_collections()).collections) == 0
# Keyword search tests
async def test_query_chunks_keyword_search(qdrant_vec_index, sample_chunks, sample_embeddings):
"""Test keyword search functionality in Qdrant."""
await qdrant_vec_index.add_chunks(sample_chunks, sample_embeddings)
query_string = "Sentence 5"
response = await qdrant_vec_index.query_keyword(query_string=query_string, k=3, score_threshold=0.0)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) > 0, f"Expected some chunks, but got {len(response.chunks)}"
non_existent_query_str = "blablabla"
response_no_results = await qdrant_vec_index.query_keyword(
query_string=non_existent_query_str, k=1, score_threshold=0.0
)
assert isinstance(response_no_results, QueryChunksResponse)
assert len(response_no_results.chunks) == 0, f"Expected 0 results, but got {len(response_no_results.chunks)}"
async def test_query_chunks_keyword_search_k_greater_than_results(qdrant_vec_index, sample_chunks, sample_embeddings):
"""Test keyword search when k is greater than available results."""
await qdrant_vec_index.add_chunks(sample_chunks, sample_embeddings)
query_str = "Sentence 1 from document 0" # Should match only one chunk
response = await qdrant_vec_index.query_keyword(k=5, score_threshold=0.0, query_string=query_str)
assert isinstance(response, QueryChunksResponse)
assert 0 < len(response.chunks) < 5, f"Expected results between [1, 4], got {len(response.chunks)}"
assert any("Sentence 1 from document 0" in chunk.content for chunk in response.chunks), "Expected chunk not found"
async def test_query_chunks_keyword_search_score_threshold(qdrant_vec_index, sample_chunks, sample_embeddings):
"""Test keyword search with score threshold filtering."""
await qdrant_vec_index.add_chunks(sample_chunks, sample_embeddings)
query_string = "Sentence 5"
# Test with low threshold (should return results)
response_low_threshold = await qdrant_vec_index.query_keyword(query_string=query_string, k=3, score_threshold=0.0)
assert len(response_low_threshold.chunks) > 0
# Test with negative threshold (should return results since scores are 0.0)
response_negative_threshold = await qdrant_vec_index.query_keyword(
query_string=query_string, k=3, score_threshold=-1.0
)
assert len(response_negative_threshold.chunks) > 0
async def test_query_chunks_keyword_search_edge_cases(qdrant_vec_index, sample_chunks, sample_embeddings):
"""Test keyword search edge cases."""
await qdrant_vec_index.add_chunks(sample_chunks, sample_embeddings)
# Test with empty string
response_empty = await qdrant_vec_index.query_keyword(query_string="", k=3, score_threshold=0.0)
assert isinstance(response_empty, QueryChunksResponse)
# Test with very long query string
long_query = "a" * 1000
response_long = await qdrant_vec_index.query_keyword(query_string=long_query, k=3, score_threshold=0.0)
assert isinstance(response_long, QueryChunksResponse)
# Test with special characters
special_query = "!@#$%^&*()_+-=[]{}|;':\",./<>?"
response_special = await qdrant_vec_index.query_keyword(query_string=special_query, k=3, score_threshold=0.0)
assert isinstance(response_special, QueryChunksResponse)
async def test_query_chunks_keyword_search_metadata_preservation(
qdrant_vec_index, sample_chunks_with_metadata, sample_embeddings_with_metadata
):
"""Test that keyword search preserves chunk metadata."""
await qdrant_vec_index.add_chunks(sample_chunks_with_metadata, sample_embeddings_with_metadata)
query_string = "Sentence 0"
response = await qdrant_vec_index.query_keyword(query_string=query_string, k=2, score_threshold=0.0)
assert len(response.chunks) > 0
for chunk in response.chunks:
# Check that metadata is preserved
assert hasattr(chunk, "metadata") or hasattr(chunk, "chunk_metadata")
if hasattr(chunk, "chunk_metadata") and chunk.chunk_metadata:
assert chunk.chunk_metadata.document_id is not None
assert chunk.chunk_metadata.chunk_id is not None
assert chunk.chunk_metadata.source is not None