Added tests + docs + CI for Elasticsearch

This commit is contained in:
Enrico Zimuel 2025-10-31 18:18:27 +01:00
parent 6f39c8994d
commit 22b27e6275
No known key found for this signature in database
GPG key ID: 6CB203F6934A69F1
9 changed files with 215 additions and 112 deletions

View file

@ -825,11 +825,11 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
Please refer to the remote provider documentation.
""",
),
InlineProviderSpec(
RemoteProviderSpec(
api=Api.vector_io,
adapter_type="elasticsearch",
provider_type="remote::elasticsearch",
pip_packages=["elasticsearch>=8.16.0, <9.0.0"] + DEFAULT_VECTOR_IO_DEPS,
pip_packages=["elasticsearch>=8.16.0,<9.0.0"] + DEFAULT_VECTOR_IO_DEPS,
module="llama_stack.providers.remote.vector_io.elasticsearch",
config_class="llama_stack.providers.remote.vector_io.elasticsearch.ElasticsearchVectorIOConfig",
api_dependencies=[Api.inference],
@ -871,6 +871,7 @@ Or you can [start a free trial](https://www.elastic.co/cloud/cloud-trial-overvie
For more information on how to deploy Elasticsearch, see the [official documentation](https://www.elastic.co/docs/deploy-manage/deploy).
## Documentation
See [Elasticsearch's documentation](https://www.elastic.co/docs/solutions/search) for more details about Elasticsearch in general.""",
)
See [Elasticsearch's documentation](https://www.elastic.co/docs/solutions/search) for more details about Elasticsearch in general.
""",
),
]

View file

@ -14,8 +14,8 @@ from llama_stack.schema_utils import json_schema_type
@json_schema_type
class ElasticsearchVectorIOConfig(BaseModel):
elasticsearch_api_key: str | None = Field(description="The API key for the Elasticsearch instance", default=None)
elasticsearch_url: str | None = Field(description="The URL of the Elasticsearch instance", default="localhost:9200")
api_key: str | None = Field(description="The API key for the Elasticsearch instance", default=None)
hosts: str | None = Field(description="The URL of the Elasticsearch instance", default="localhost:9200")
persistence: KVStoreReference | None = Field(
description="Config for KV store backend (SQLite only for now)", default=None
)
@ -23,10 +23,10 @@ class ElasticsearchVectorIOConfig(BaseModel):
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"elasticsearch_api_key": None,
"elasticsearch_url": "${env.ELASTICSEARCH_URL:=localhost:9200}",
"hosts": "${env.ELASTICSEARCH_API_KEY:=None}",
"api_key": "${env.ELASTICSEARCH_URL:=localhost:9200}",
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::elasticsearch",
).model_dump(exclude_none=True),
}
}

View file

@ -4,12 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
from typing import Any
from numpy.typing import NDArray
from elasticsearch import AsyncElasticsearch
from elasticsearch.helpers import async_bulk
from numpy.typing import NDArray
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files
@ -18,13 +17,10 @@ from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
VectorStoreChunkingStrategy,
VectorStoreFileObject,
)
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex
@ -36,6 +32,10 @@ log = get_logger(name=__name__, category="vector_io::elasticsearch")
# KV store prefixes for vector databases
VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_stores:elasticsearch:{VERSION}::"
VECTOR_INDEX_PREFIX = f"vector_index:elasticsearch:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:elasticsearch:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:elasticsearch:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:elasticsearch:{VERSION}::"
class ElasticsearchIndex(EmbeddingIndex):
@ -61,39 +61,32 @@ class ElasticsearchIndex(EmbeddingIndex):
body={
"mappings": {
"properties": {
"vector": {
"type": "dense_vector",
"dims": len(embeddings[0])
},
"vector": {"type": "dense_vector", "dims": len(embeddings[0])},
"chunk_content": {"type": "object"},
}
}
}
},
)
actions = []
for chunk, embedding in zip(chunks, embeddings, strict=False):
actions.append({
"_op_type": "index",
"_index": self.collection_name,
"_id": chunk.chunk_id,
"_source": {
"vector": embedding,
"chunk_content": chunk.model_dump_json()
}
})
actions.append(
{
"_op_type": "index",
"_index": self.collection_name,
"_id": chunk.chunk_id,
"_source": {"vector": embedding, "chunk_content": chunk.model_dump_json()},
}
)
try:
successful_count, error_count = await async_bulk(
client=self.client,
actions=actions,
timeout='300s',
refresh=True,
raise_on_error=False,
stats_only=True
client=self.client, actions=actions, timeout="300s", refresh=True, raise_on_error=False, stats_only=True
)
if error_count > 0:
log.warning(f"{error_count} out of {len(chunks)} documents failed to upload in Elasticsearch index {self.collection_name}")
log.warning(
f"{error_count} out of {len(chunks)} documents failed to upload in Elasticsearch index {self.collection_name}"
)
log.info(f"Successfully added {successful_count} chunks to Elasticsearch index {self.collection_name}")
except Exception as e:
@ -105,23 +98,16 @@ class ElasticsearchIndex(EmbeddingIndex):
actions = []
for chunk in chunks_for_deletion:
actions.append({
"_op_type": "delete",
"_index": self.collection_name,
"_id": chunk.chunk_id
})
actions.append({"_op_type": "delete", "_index": self.collection_name, "_id": chunk.chunk_id})
try:
successful_count, error_count = await async_bulk(
client=self.client,
actions=actions,
timeout='300s',
refresh=True,
raise_on_error=True,
stats_only=True
client=self.client, actions=actions, timeout="300s", refresh=True, raise_on_error=True, stats_only=True
)
if error_count > 0:
log.warning(f"{error_count} out of {len(chunks_for_deletion)} documents failed to be deleted in Elasticsearch index {self.collection_name}")
log.warning(
f"{error_count} out of {len(chunks_for_deletion)} documents failed to be deleted in Elasticsearch index {self.collection_name}"
)
log.info(f"Successfully deleted {successful_count} chunks from Elasticsearch index {self.collection_name}")
except Exception as e:
@ -132,12 +118,12 @@ class ElasticsearchIndex(EmbeddingIndex):
"""Convert search results to QueryChunksResponse."""
chunks, scores = [], []
for result in results['hits']['hits']:
for result in results["hits"]["hits"]:
try:
chunk = Chunk(
content=result["_source"]["chunk_content"],
chunk_id=result["_id"],
embedding=result["_source"]["vector"]
stored_chunk_id=result["_id"],
embedding=result["_source"]["vector"],
)
except Exception:
log.exception("Failed to parse chunk")
@ -147,24 +133,16 @@ class ElasticsearchIndex(EmbeddingIndex):
scores.append(result["_score"])
return QueryChunksResponse(chunks=chunks, scores=scores)
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
"""Vector search using kNN."""
try:
results = (
await self.client.search(
index=self.collection_name,
query={
"knn": {
"field": "vector",
"query_vector": embedding.tolist(),
"k": k
}
},
min_score=score_threshold,
limit=k
)
results = await self.client.search(
index=self.collection_name,
query={"knn": {"field": "vector", "query_vector": embedding.tolist(), "k": k}},
min_score=score_threshold,
limit=k,
)
except Exception as e:
log.error(f"Error performing vector query on Elasticsearch index {self.collection_name}: {e}")
@ -176,19 +154,11 @@ class ElasticsearchIndex(EmbeddingIndex):
"""Keyword search using match query."""
try:
results = (
await self.client.search(
index=self.collection_name,
query={
"match": {
"chunk_content": {
"query": query_string
}
}
},
min_score=score_threshold,
limit=k
)
results = await self.client.search(
index=self.collection_name,
query={"match": {"chunk_content": {"query": query_string}}},
min_score=score_threshold,
limit=k,
)
except Exception as e:
log.error(f"Error performing keyword query on Elasticsearch index {self.collection_name}: {e}")
@ -205,32 +175,15 @@ class ElasticsearchIndex(EmbeddingIndex):
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
supported_retrievers = ["rrf", "linear"]
if reranker_type not in supported_retrievers:
raise ValueError(f"Unsupported reranker type: {reranker_type}. Supported types are: {supported_retrievers}")
retriever = {
reranker_type: {
"retrievers": [
{
"retriever": {
"standard": {
"query": {
"match": {
"chunk_content": query_string
}
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": embedding.tolist(),
"k": k
}
}
{"retriever": {"standard": {"query": {"match": {"chunk_content": query_string}}}}},
{"knn": {"field": "vector", "query_vector": embedding.tolist(), "k": k}},
]
}
}
@ -252,17 +205,14 @@ class ElasticsearchIndex(EmbeddingIndex):
retrievers_params = reranker_params.get("retrievers")
if retrievers_params is not None:
for i in range(0, len(retriever["linear"]["retrievers"])):
retr_type=retriever["linear"]["retrievers"][i]["retriever"].key()
retr_type = list(retriever["linear"]["retrievers"][i].keys())[0]
retriever["linear"]["retrievers"][i].update(retrievers_params["retrievers"][retr_type])
del reranker_params["retrievers"]
retriever["linear"].update(reranker_params)
try:
results = await self.client.search(
index=self.collection_name,
size=k,
retriever=retriever,
min_score=score_threshold
index=self.collection_name, size=k, retriever=retriever, min_score=score_threshold
)
except Exception as e:
log.error(f"Error performing hybrid query on Elasticsearch index {self.collection_name}: {e}")