mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-05 12:21:52 +00:00
bugfixes
This commit is contained in:
parent
37ca22cda6
commit
23028e26ff
7 changed files with 83 additions and 47 deletions
|
@ -7,12 +7,13 @@
|
|||
from typing import Optional
|
||||
|
||||
from llama_models.datatypes import * # noqa: F403
|
||||
from llama_models.sku_list import all_registered_models, resolve_model
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F401, F403
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
|
||||
class MetaReferenceImplConfig(BaseModel):
|
||||
model: str = Field(
|
||||
|
@ -27,12 +28,7 @@ class MetaReferenceImplConfig(BaseModel):
|
|||
@field_validator("model")
|
||||
@classmethod
|
||||
def validate_model(cls, model: str) -> str:
|
||||
permitted_models = [
|
||||
m.descriptor()
|
||||
for m in all_registered_models()
|
||||
if m.model_family in {ModelFamily.llama3_1, ModelFamily.llama3_2}
|
||||
or m.core_model_id == CoreModelId.llama_guard_3_8b
|
||||
]
|
||||
permitted_models = supported_inference_models()
|
||||
if model not in permitted_models:
|
||||
model_list = "\n\t".join(permitted_models)
|
||||
raise ValueError(
|
||||
|
|
|
@ -52,7 +52,7 @@ def model_checkpoint_dir(model) -> str:
|
|||
checkpoint_dir = checkpoint_dir / "original"
|
||||
|
||||
assert checkpoint_dir.exists(), (
|
||||
f"Could not find checkpoint dir: {checkpoint_dir}."
|
||||
f"Could not find checkpoints in: {model_local_dir(model.descriptor())}. "
|
||||
f"Please download model using `llama download --model-id {model.descriptor()}`"
|
||||
)
|
||||
return str(checkpoint_dir)
|
||||
|
@ -185,11 +185,11 @@ class Llama:
|
|||
) -> Generator:
|
||||
params = self.model.params
|
||||
|
||||
# input_tokens = [
|
||||
# self.formatter.vision_token if t == 128256 else t
|
||||
# for t in model_input.tokens
|
||||
# ]
|
||||
# cprint("Input to model -> " + self.tokenizer.decode(input_tokens), "red")
|
||||
input_tokens = [
|
||||
self.formatter.vision_token if t == 128256 else t
|
||||
for t in model_input.tokens
|
||||
]
|
||||
cprint("Input to model -> " + self.tokenizer.decode(input_tokens), "red")
|
||||
prompt_tokens = [model_input.tokens]
|
||||
|
||||
bsz = 1
|
||||
|
@ -207,6 +207,7 @@ class Llama:
|
|||
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
|
||||
|
||||
is_vision = isinstance(self.model, CrossAttentionTransformer)
|
||||
print(f"{is_vision=}")
|
||||
if is_vision:
|
||||
images = model_input.vision.images if model_input.vision is not None else []
|
||||
mask = model_input.vision.mask if model_input.vision is not None else []
|
||||
|
|
|
@ -13,7 +13,6 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
|
|||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
from .base import CANNED_RESPONSE_TEXT, OnViolationAction, ShieldBase, ShieldResponse
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
SAFE_RESPONSE = "safe"
|
||||
|
@ -69,20 +68,17 @@ DEFAULT_LG_V3_SAFETY_CATEGORIES = [
|
|||
CAT_ELECTIONS,
|
||||
]
|
||||
|
||||
# model names
|
||||
LG_3_8B = "Llama-Guard-3-8B"
|
||||
LG_3_1B = "Llama-Guard-3-1B"
|
||||
LG_3_11B_VISION = "Llama-Guard-3-11B-Vision"
|
||||
|
||||
|
||||
MODEL_TO_SAFETY_CATEGORIES_MAP = {
|
||||
LG_3_8B: DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE],
|
||||
LG_3_1B: DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
LG_3_11B_VISION: DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
CoreModelId.llama_guard_3_8b.value: (
|
||||
DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE]
|
||||
),
|
||||
CoreModelId.llama_guard_3_1b.value: DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
CoreModelId.llama_guard_3_11b_vision.value: DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
}
|
||||
|
||||
|
||||
PROMPT_TASK = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nTask: Check if there is unsafe content in '$agent_type' messages in conversations according our safety policy with the below categories."
|
||||
PROMPT_TASK = "Task: Check if there is unsafe content in '$agent_type' messages in conversations according our safety policy with the below categories."
|
||||
|
||||
SAFETY_CATEGORIES = """
|
||||
|
||||
|
@ -103,7 +99,7 @@ $conversations
|
|||
PROMPT_INSTRUCTIONS = """
|
||||
Provide your safety assessment for ONLY THE LAST $agent_type message in the above conversation:
|
||||
- First line must read 'safe' or 'unsafe'.
|
||||
- If unsafe, a second line must include a comma-separated list of violated categories. <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
||||
- If unsafe, a second line must include a comma-separated list of violated categories."""
|
||||
|
||||
|
||||
PROMPT_TEMPLATE = Template(
|
||||
|
@ -130,6 +126,9 @@ class LlamaGuardShield(ShieldBase):
|
|||
x in SAFETY_CATEGORIES_TO_CODE_MAP.values() for x in excluded_categories
|
||||
), "Invalid categories in excluded categories. Expected format is ['S1', 'S2', ..]"
|
||||
|
||||
if model not in MODEL_TO_SAFETY_CATEGORIES_MAP:
|
||||
raise ValueError(f"Unsupported model: {model}")
|
||||
|
||||
self.model = model
|
||||
self.inference_api = inference_api
|
||||
self.excluded_categories = excluded_categories
|
||||
|
@ -151,7 +150,8 @@ class LlamaGuardShield(ShieldBase):
|
|||
excluded_categories = []
|
||||
|
||||
final_categories = []
|
||||
all_categories = MODEL_TO_SAFETY_CATEGORIES_MAP[self.get_model_name()]
|
||||
|
||||
all_categories = MODEL_TO_SAFETY_CATEGORIES_MAP[self.model]
|
||||
for cat in all_categories:
|
||||
cat_code = SAFETY_CATEGORIES_TO_CODE_MAP[cat]
|
||||
if cat_code in excluded_categories:
|
||||
|
@ -179,7 +179,6 @@ class LlamaGuardShield(ShieldBase):
|
|||
return messages
|
||||
|
||||
async def run(self, messages: List[Message]) -> ShieldResponse:
|
||||
|
||||
messages = self.validate_messages(messages)
|
||||
if self.disable_input_check and messages[-1].role == Role.user.value:
|
||||
return ShieldResponse(is_violation=False)
|
||||
|
@ -188,7 +187,7 @@ class LlamaGuardShield(ShieldBase):
|
|||
is_violation=False,
|
||||
)
|
||||
|
||||
if self.model == LG_3_11B_VISION:
|
||||
if self.model == CoreModelId.llama_guard_3_11b_vision.value:
|
||||
shield_input_message = self.build_vision_shield_input(messages)
|
||||
else:
|
||||
shield_input_message = self.build_text_shield_input(messages)
|
||||
|
@ -230,6 +229,7 @@ class LlamaGuardShield(ShieldBase):
|
|||
content.append(c)
|
||||
elif isinstance(c, ImageMedia):
|
||||
if most_recent_img is None and m.role == Role.user.value:
|
||||
most_recent_img = c
|
||||
content.append(c)
|
||||
else:
|
||||
raise ValueError(f"Unknown content type: {c}")
|
||||
|
@ -238,12 +238,12 @@ class LlamaGuardShield(ShieldBase):
|
|||
else:
|
||||
raise ValueError(f"Unknown content type: {m.content}")
|
||||
|
||||
content = []
|
||||
prompt = []
|
||||
if most_recent_img is not None:
|
||||
content.append(most_recent_img)
|
||||
content.append(self.build_prompt(conversation[::-1]))
|
||||
prompt.append(most_recent_img)
|
||||
prompt.append(self.build_prompt(conversation[::-1]))
|
||||
|
||||
return UserMessage(content=content)
|
||||
return UserMessage(content=prompt)
|
||||
|
||||
def build_prompt(self, messages: List[Message]) -> str:
|
||||
categories = self.get_safety_categories()
|
||||
|
@ -254,6 +254,7 @@ class LlamaGuardShield(ShieldBase):
|
|||
for m in messages
|
||||
]
|
||||
)
|
||||
return conversations_str
|
||||
return PROMPT_TEMPLATE.substitute(
|
||||
agent_type=messages[-1].role.capitalize(),
|
||||
categories=categories_str,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue