mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-23 21:04:29 +00:00
llama stack distributions / templates / docker refactor (#266)
* docker compose ollama * comment * update compose file * readme for distributions * readme * move distribution folders * move distribution/templates to distributions/ * rename * kill distribution/templates * readme * readme * build/developer cookbook/new api provider * developer cookbook * readme * readme * [bugfix] fix case for agent when memory bank registered without specifying provider_id (#264) * fix case where memory bank is registered without provider_id * memory test * agents unit test * Add an option to not use elastic agents for meta-reference inference (#269) * Allow overridding checkpoint_dir via config * Small rename * Make all methods `async def` again; add completion() for meta-reference (#270) PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def". The rationale was that this allowed the user (within llama-stack) of this to use it as: ``` async for chunk in api.chat_completion(params) ``` However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like: ``` async for chunk in await api.chat_completion(params) ``` Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :) * Improve an important error message * update ollama for llama-guard3 * Add vLLM inference provider for OpenAI compatible vLLM server (#178) This PR adds vLLM inference provider for OpenAI compatible vLLM server. * Create .readthedocs.yaml Trying out readthedocs * Update event_logger.py (#275) spelling error * vllm * build templates * delete templates * tmp add back build to avoid merge conflicts * vllm * vllm --------- Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Yuan Tang <terrytangyuan@gmail.com> Co-authored-by: raghotham <rsm@meta.com> Co-authored-by: nehal-a2z <nehal@coderabbit.ai>
This commit is contained in:
parent
c995219731
commit
23210e8679
32 changed files with 850 additions and 335 deletions
11
distributions/README.md
Normal file
11
distributions/README.md
Normal file
|
@ -0,0 +1,11 @@
|
|||
# Llama Stack Distribution
|
||||
|
||||
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
|
||||
|
||||
|
||||
## Quick Start Llama Stack Distributions Guide
|
||||
| **Distribution** | **Llama Stack Docker** | Start This Distribution | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|:----------------: |:------------------------------------------: |:-----------------------: |:------------------: |:------------------: |:------------------: |:------------------: |:------------------: |
|
||||
| Meta Reference | llamastack/distribution-meta-reference-gpu | [Guide](./meta-reference-gpu/) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
||||
| Ollama | llamastack/distribution-ollama | [Guide](./ollama/) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
||||
| TGI | llamastack/distribution-tgi | [Guide](./tgi/) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
10
distributions/bedrock/build.yaml
Normal file
10
distributions/bedrock/build.yaml
Normal file
|
@ -0,0 +1,10 @@
|
|||
name: bedrock
|
||||
distribution_spec:
|
||||
description: Use Amazon Bedrock APIs.
|
||||
providers:
|
||||
inference: remote::bedrock
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
10
distributions/databricks/build.yaml
Normal file
10
distributions/databricks/build.yaml
Normal file
|
@ -0,0 +1,10 @@
|
|||
name: databricks
|
||||
distribution_spec:
|
||||
description: Use Databricks for running LLM inference
|
||||
providers:
|
||||
inference: remote::databricks
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
10
distributions/fireworks/build.yaml
Normal file
10
distributions/fireworks/build.yaml
Normal file
|
@ -0,0 +1,10 @@
|
|||
name: fireworks
|
||||
distribution_spec:
|
||||
description: Use Fireworks.ai for running LLM inference
|
||||
providers:
|
||||
inference: remote::fireworks
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
10
distributions/hf-endpoint/build.yaml
Normal file
10
distributions/hf-endpoint/build.yaml
Normal file
|
@ -0,0 +1,10 @@
|
|||
name: hf-endpoint
|
||||
distribution_spec:
|
||||
description: "Like local, but use Hugging Face Inference Endpoints for running LLM inference.\nSee https://hf.co/docs/api-endpoints."
|
||||
providers:
|
||||
inference: remote::hf::endpoint
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
10
distributions/hf-serverless/build.yaml
Normal file
10
distributions/hf-serverless/build.yaml
Normal file
|
@ -0,0 +1,10 @@
|
|||
name: hf-serverless
|
||||
distribution_spec:
|
||||
description: "Like local, but use Hugging Face Inference API (serverless) for running LLM inference.\nSee https://hf.co/docs/api-inference."
|
||||
providers:
|
||||
inference: remote::hf::serverless
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
33
distributions/meta-reference-gpu/README.md
Normal file
33
distributions/meta-reference-gpu/README.md
Normal file
|
@ -0,0 +1,33 @@
|
|||
# Meta Reference Distribution
|
||||
|
||||
The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | meta-reference | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Start the Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a TGI server with access to your GPU.
|
||||
|
||||
> [!NOTE]
|
||||
> For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.
|
||||
```
|
||||
export LLAMA_CHECKPOINT_DIR=~/.llama
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
To download and start running a pre-built docker container, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama --gpus=all llamastack/llamastack-local-gpu
|
||||
```
|
||||
|
||||
### Alternative (Build and start distribution locally via conda)
|
||||
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on starting up a meta-reference distribution.
|
13
distributions/meta-reference-gpu/build.yaml
Normal file
13
distributions/meta-reference-gpu/build.yaml
Normal file
|
@ -0,0 +1,13 @@
|
|||
name: distribution-meta-reference-gpu
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory:
|
||||
- meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
50
distributions/meta-reference-gpu/run.yaml
Normal file
50
distributions/meta-reference-gpu/run.yaml
Normal file
|
@ -0,0 +1,50 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
model: Llama3.1-8B-Instruct
|
||||
quantization: null
|
||||
torch_seed: null
|
||||
max_seq_len: 4096
|
||||
max_batch_size: 1
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
91
distributions/ollama/README.md
Normal file
91
distributions/ollama/README.md
Normal file
|
@ -0,0 +1,91 @@
|
|||
# Ollama Distribution
|
||||
|
||||
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |---------------- |---------------- |---------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::ollama | meta-reference | remote::pgvector, remote::chroma | remote::ollama | meta-reference |
|
||||
|
||||
|
||||
### Start a Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a Ollama server with access to your GPU.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/ollama/gpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
You will see outputs similar to following ---
|
||||
```
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:41 | 200 | 226.841µs | ::1 | GET "/api/ps"
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:42 | 200 | 60.908µs | ::1 | GET "/api/ps"
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
[llamastack] | Resolved 12 providers
|
||||
[llamastack] | inner-inference => ollama0
|
||||
[llamastack] | models => __routing_table__
|
||||
[llamastack] | inference => __autorouted__
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This will start an ollama server with CPU only, please see [Ollama Documentations](https://github.com/ollama/ollama) for serving models on CPU only.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/ollama/cpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
### (Alternative) ollama run + llama stack Run
|
||||
|
||||
If you wish to separately spin up a Ollama server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### Start Ollama server.
|
||||
- Please check the [Ollama Documentations](https://github.com/ollama/ollama) for more details.
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
**Via CLI**
|
||||
```
|
||||
ollama run <model_id>
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to Ollama server
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./ollama-run.yaml:/root/llamastack-run-ollama.yaml --gpus=all llamastack-local-cpu --yaml_config /root/llamastack-run-ollama.yaml
|
||||
```
|
||||
|
||||
Make sure in you `ollama-run.yaml` file, you inference provider is pointing to the correct Ollama endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
```
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```
|
||||
llama stack build --config ./build.yaml
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
13
distributions/ollama/build.yaml
Normal file
13
distributions/ollama/build.yaml
Normal file
|
@ -0,0 +1,13 @@
|
|||
name: distribution-ollama
|
||||
distribution_spec:
|
||||
description: Use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory:
|
||||
- meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
30
distributions/ollama/cpu/compose.yaml
Normal file
30
distributions/ollama/cpu/compose.yaml
Normal file
|
@ -0,0 +1,30 @@
|
|||
services:
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
|
||||
ports:
|
||||
- "11434:11434"
|
||||
command: []
|
||||
llamastack:
|
||||
depends_on:
|
||||
- ollama
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
volumes:
|
||||
ollama:
|
46
distributions/ollama/cpu/run.yaml
Normal file
46
distributions/ollama/cpu/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
48
distributions/ollama/gpu/compose.yaml
Normal file
48
distributions/ollama/gpu/compose.yaml
Normal file
|
@ -0,0 +1,48 @@
|
|||
services:
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
|
||||
ports:
|
||||
- "11434:11434"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
llamastack-local-cpu:
|
||||
depends_on:
|
||||
- ollama
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./ollama-run.yaml:/root/llamastack-run-ollama.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-ollama.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
volumes:
|
||||
ollama:
|
46
distributions/ollama/gpu/run.yaml
Normal file
46
distributions/ollama/gpu/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
94
distributions/tgi/README.md
Normal file
94
distributions/tgi/README.md
Normal file
|
@ -0,0 +1,94 @@
|
|||
# TGI Distribution
|
||||
|
||||
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Start the Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a TGI server with access to your GPU.
|
||||
|
||||
|
||||
```
|
||||
$ cd llama_stack/distribution/docker/tgi
|
||||
$ ls
|
||||
compose.yaml tgi-run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have an hosted endpoint compatible with TGI server.
|
||||
|
||||
```
|
||||
$ cd llama-stack/distribution/tgi/cpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
Replace <ENTER_YOUR_TGI_HOSTED_ENDPOINT> in `run.yaml` file with your TGI endpoint.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
|
||||
```
|
||||
|
||||
### (Alternative) TGI server + llama stack run (Single Node GPU)
|
||||
|
||||
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### (optional) Start TGI server locally
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
|
||||
|
||||
```
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
|
||||
```
|
||||
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack-local-cpu --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```bash
|
||||
llama stack build --config ./build.yaml
|
||||
# -- start a TGI server endpoint
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
13
distributions/tgi/build.yaml
Normal file
13
distributions/tgi/build.yaml
Normal file
|
@ -0,0 +1,13 @@
|
|||
name: distribution-tgi
|
||||
distribution_spec:
|
||||
description: Use TGI for running LLM inference
|
||||
providers:
|
||||
inference: remote::tgi
|
||||
memory:
|
||||
- meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
54
distributions/tgi/cpu/compose.yaml
Normal file
54
distributions/tgi/cpu/compose.yaml
Normal file
|
@ -0,0 +1,54 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- "5009:5009"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
llamastack:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
46
distributions/tgi/cpu/run.yaml
Normal file
46
distributions/tgi/cpu/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
55
distributions/tgi/gpu/compose.yaml
Normal file
55
distributions/tgi/gpu/compose.yaml
Normal file
|
@ -0,0 +1,55 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- "5009:5009"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
llamastack:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to TGI run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for TGI server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
46
distributions/tgi/gpu/run.yaml
Normal file
46
distributions/tgi/gpu/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
10
distributions/together/build.yaml
Normal file
10
distributions/together/build.yaml
Normal file
|
@ -0,0 +1,10 @@
|
|||
name: together
|
||||
distribution_spec:
|
||||
description: Use Together.ai for running LLM inference
|
||||
providers:
|
||||
inference: remote::together
|
||||
memory: meta-reference
|
||||
safety: remote::together
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
10
distributions/vllm/build.yaml
Normal file
10
distributions/vllm/build.yaml
Normal file
|
@ -0,0 +1,10 @@
|
|||
name: vllm
|
||||
distribution_spec:
|
||||
description: Like local, but use vLLM for running LLM inference
|
||||
providers:
|
||||
inference: vllm
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
Loading…
Add table
Add a link
Reference in a new issue