mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
llama stack distributions / templates / docker refactor (#266)
* docker compose ollama * comment * update compose file * readme for distributions * readme * move distribution folders * move distribution/templates to distributions/ * rename * kill distribution/templates * readme * readme * build/developer cookbook/new api provider * developer cookbook * readme * readme * [bugfix] fix case for agent when memory bank registered without specifying provider_id (#264) * fix case where memory bank is registered without provider_id * memory test * agents unit test * Add an option to not use elastic agents for meta-reference inference (#269) * Allow overridding checkpoint_dir via config * Small rename * Make all methods `async def` again; add completion() for meta-reference (#270) PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def". The rationale was that this allowed the user (within llama-stack) of this to use it as: ``` async for chunk in api.chat_completion(params) ``` However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like: ``` async for chunk in await api.chat_completion(params) ``` Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :) * Improve an important error message * update ollama for llama-guard3 * Add vLLM inference provider for OpenAI compatible vLLM server (#178) This PR adds vLLM inference provider for OpenAI compatible vLLM server. * Create .readthedocs.yaml Trying out readthedocs * Update event_logger.py (#275) spelling error * vllm * build templates * delete templates * tmp add back build to avoid merge conflicts * vllm * vllm --------- Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Yuan Tang <terrytangyuan@gmail.com> Co-authored-by: raghotham <rsm@meta.com> Co-authored-by: nehal-a2z <nehal@coderabbit.ai>
This commit is contained in:
parent
c995219731
commit
23210e8679
32 changed files with 850 additions and 335 deletions
|
@ -13,7 +13,7 @@ from functools import lru_cache
|
|||
from pathlib import Path
|
||||
|
||||
TEMPLATES_PATH = (
|
||||
Path(os.path.relpath(__file__)).parent.parent.parent / "distribution" / "templates"
|
||||
Path(os.path.relpath(__file__)).parent.parent.parent.parent / "distributions"
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -1,28 +0,0 @@
|
|||
# Docker Compose Scripts
|
||||
|
||||
This folder contains scripts to enable starting a distribution using `docker compose`.
|
||||
|
||||
|
||||
#### Example: TGI Inference Adapter
|
||||
```
|
||||
$ cd llama_stack/distribution/docker/tgi
|
||||
$ ls
|
||||
compose.yaml tgi-run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
|
@ -1,55 +0,0 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- "5009:5009"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
llamastack-local-cpu:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to TGI run.yaml file
|
||||
- ./tgi-run.yaml:/root/llamastack-run-tgi.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for TGI server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-tgi.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
|
@ -1,46 +0,0 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
|
@ -1,10 +0,0 @@
|
|||
name: local-bedrock-conda-example
|
||||
distribution_spec:
|
||||
description: Use Amazon Bedrock APIs.
|
||||
providers:
|
||||
inference: remote::bedrock
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,15 +0,0 @@
|
|||
name: local-cpu
|
||||
distribution_spec:
|
||||
description: remote inference + local safety/agents/memory
|
||||
docker_image: null
|
||||
providers:
|
||||
inference:
|
||||
- remote::ollama
|
||||
- remote::tgi
|
||||
- remote::together
|
||||
- remote::fireworks
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
memory: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
|
@ -1,10 +0,0 @@
|
|||
name: local-databricks
|
||||
distribution_spec:
|
||||
description: Use Databricks for running LLM inference
|
||||
providers:
|
||||
inference: remote::databricks
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,10 +0,0 @@
|
|||
name: local-fireworks
|
||||
distribution_spec:
|
||||
description: Use Fireworks.ai for running LLM inference
|
||||
providers:
|
||||
inference: remote::fireworks
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,10 +0,0 @@
|
|||
name: local-gpu
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
|
@ -1,10 +0,0 @@
|
|||
name: local-hf-endpoint
|
||||
distribution_spec:
|
||||
description: "Like local, but use Hugging Face Inference Endpoints for running LLM inference.\nSee https://hf.co/docs/api-endpoints."
|
||||
providers:
|
||||
inference: remote::hf::endpoint
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,10 +0,0 @@
|
|||
name: local-hf-serverless
|
||||
distribution_spec:
|
||||
description: "Like local, but use Hugging Face Inference API (serverless) for running LLM inference.\nSee https://hf.co/docs/api-inference."
|
||||
providers:
|
||||
inference: remote::hf::serverless
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,10 +0,0 @@
|
|||
name: local-ollama
|
||||
distribution_spec:
|
||||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,10 +0,0 @@
|
|||
name: local-tgi
|
||||
distribution_spec:
|
||||
description: Like local, but use a TGI server for running LLM inference.
|
||||
providers:
|
||||
inference: remote::tgi
|
||||
memory: meta-reference
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,11 +0,0 @@
|
|||
name: local-tgi-chroma
|
||||
distribution_spec:
|
||||
description: remote tgi inference + chromadb memory
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: remote::tgi
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
memory: remote::chromadb
|
||||
telemetry: meta-reference
|
||||
image_type: docker
|
|
@ -1,10 +0,0 @@
|
|||
name: local-together
|
||||
distribution_spec:
|
||||
description: Use Together.ai for running LLM inference
|
||||
providers:
|
||||
inference: remote::together
|
||||
memory: meta-reference
|
||||
safety: remote::together
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
image_type: conda
|
|
@ -1,50 +0,0 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
model: Llama3.1-8B-Instruct
|
||||
quantization: null
|
||||
torch_seed: null
|
||||
max_seq_len: 4096
|
||||
max_batch_size: 1
|
||||
safety:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config: {}
|
|
@ -1,46 +0,0 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
safety:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config: {}
|
|
@ -60,15 +60,15 @@ def available_providers() -> List[ProviderSpec]:
|
|||
module="llama_stack.providers.adapters.inference.ollama",
|
||||
),
|
||||
),
|
||||
# remote_provider_spec(
|
||||
# api=Api.inference,
|
||||
# adapter=AdapterSpec(
|
||||
# adapter_type="vllm",
|
||||
# pip_packages=["openai"],
|
||||
# module="llama_stack.providers.adapters.inference.vllm",
|
||||
# config_class="llama_stack.providers.adapters.inference.vllm.VLLMImplConfig",
|
||||
# ),
|
||||
# ),
|
||||
# remote_provider_spec(
|
||||
# api=Api.inference,
|
||||
# adapter=AdapterSpec(
|
||||
# adapter_type="vllm",
|
||||
# pip_packages=["openai"],
|
||||
# module="llama_stack.providers.adapters.inference.vllm",
|
||||
# config_class="llama_stack.providers.adapters.inference.vllm.VLLMImplConfig",
|
||||
# ),
|
||||
# ),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue