mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-04 10:10:36 +00:00
fix(telemetry): token counters changed to histograms to reflect count per request
This commit is contained in:
parent
0e0bc8aba7
commit
23fce9718c
4 changed files with 114 additions and 120 deletions
|
|
@ -32,7 +32,7 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
|
|||
span
|
||||
for span in reversed(spans)
|
||||
if span.get_span_type() == "async_generator"
|
||||
and span.get_attribute("chunk_count")
|
||||
and span.attributes.get("chunk_count")
|
||||
and span.has_message("Test trace openai 1")
|
||||
),
|
||||
None,
|
||||
|
|
@ -40,7 +40,7 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
|
|||
|
||||
assert async_generator_span is not None
|
||||
|
||||
raw_chunk_count = async_generator_span.get_attribute("chunk_count")
|
||||
raw_chunk_count = async_generator_span.attributes.get("chunk_count")
|
||||
assert raw_chunk_count is not None
|
||||
chunk_count = int(raw_chunk_count)
|
||||
|
||||
|
|
@ -85,7 +85,7 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
logged_model_ids = []
|
||||
|
||||
for span in spans:
|
||||
attrs = span.get_attributes()
|
||||
attrs = span.attributes
|
||||
assert attrs is not None
|
||||
|
||||
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
|
||||
|
|
@ -98,7 +98,7 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
assert class_name and method_name
|
||||
assert span.get_span_type() in ["async", "sync", "async_generator"]
|
||||
|
||||
args_field = span.get_attribute("__args__")
|
||||
args_field = span.attributes.get("__args__")
|
||||
if args_field:
|
||||
args = json.loads(args_field)
|
||||
if "model_id" in args:
|
||||
|
|
@ -115,37 +115,32 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
# Filter metrics to only those from the specific model used in the request
|
||||
# This prevents issues when multiple metrics with the same name exist from different models
|
||||
# (e.g., when safety models like llama-guard are also called)
|
||||
model_metrics = {}
|
||||
inference_model_metrics = {}
|
||||
all_model_ids = set()
|
||||
|
||||
for name, metric in metrics.items():
|
||||
if name in expected_metrics:
|
||||
model_id = metric.get_attribute("model_id")
|
||||
model_id = metric.attributes.get("model_id")
|
||||
all_model_ids.add(model_id)
|
||||
# Only include metrics from the specific model used in the test request
|
||||
if model_id == text_model_id:
|
||||
model_metrics[name] = metric
|
||||
|
||||
# Provide helpful error message if we have metrics from multiple models
|
||||
if len(all_model_ids) > 1:
|
||||
print(f"Note: Found metrics from multiple models: {sorted(all_model_ids)}")
|
||||
print(f"Filtering to only metrics from test model: {text_model_id}")
|
||||
inference_model_metrics[name] = metric
|
||||
|
||||
# Verify expected metrics are present for our specific model
|
||||
for metric_name in expected_metrics:
|
||||
assert metric_name in model_metrics, (
|
||||
assert metric_name in inference_model_metrics, (
|
||||
f"Expected metric {metric_name} for model {text_model_id} not found. "
|
||||
f"Available models: {sorted(all_model_ids)}, "
|
||||
f"Available metrics for {text_model_id}: {list(model_metrics.keys())}"
|
||||
f"Available metrics for {text_model_id}: {list(inference_model_metrics.keys())}"
|
||||
)
|
||||
|
||||
# Verify metric values match usage data
|
||||
assert model_metrics["completion_tokens"].get_value() == usage["completion_tokens"], (
|
||||
f"Expected {usage['completion_tokens']} for completion_tokens, but got {model_metrics['completion_tokens'].get_value()}"
|
||||
assert inference_model_metrics["completion_tokens"].value == usage["completion_tokens"], (
|
||||
f"Expected {usage['completion_tokens']} for completion_tokens, but got {inference_model_metrics['completion_tokens'].value}"
|
||||
)
|
||||
assert model_metrics["total_tokens"].get_value() == usage["total_tokens"], (
|
||||
f"Expected {usage['total_tokens']} for total_tokens, but got {model_metrics['total_tokens'].get_value()}"
|
||||
assert inference_model_metrics["total_tokens"].value == usage["total_tokens"], (
|
||||
f"Expected {usage['total_tokens']} for total_tokens, but got {inference_model_metrics['total_tokens'].value}"
|
||||
)
|
||||
assert model_metrics["prompt_tokens"].get_value() == usage["prompt_tokens"], (
|
||||
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {model_metrics['prompt_tokens'].get_value()}"
|
||||
assert inference_model_metrics["prompt_tokens"].value == usage["prompt_tokens"], (
|
||||
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {inference_model_metrics['prompt_tokens'].value}"
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue