mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
fix(telemetry): token counters changed to histograms to reflect count per request
This commit is contained in:
parent
0e0bc8aba7
commit
23fce9718c
4 changed files with 114 additions and 120 deletions
|
|
@ -427,6 +427,7 @@ _GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
|
|||
"counters": {},
|
||||
"gauges": {},
|
||||
"up_down_counters": {},
|
||||
"histograms": {},
|
||||
}
|
||||
_global_lock = threading.Lock()
|
||||
_TRACER_PROVIDER = None
|
||||
|
|
@ -540,6 +541,16 @@ class Telemetry:
|
|||
)
|
||||
return cast(metrics.ObservableGauge, _GLOBAL_STORAGE["gauges"][name])
|
||||
|
||||
def _get_or_create_histogram(self, name: str, unit: str) -> metrics.Histogram:
|
||||
assert self.meter is not None
|
||||
if name not in _GLOBAL_STORAGE["histograms"]:
|
||||
_GLOBAL_STORAGE["histograms"][name] = self.meter.create_histogram(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"Histogram for {name}",
|
||||
)
|
||||
return cast(metrics.Histogram, _GLOBAL_STORAGE["histograms"][name])
|
||||
|
||||
def _log_metric(self, event: MetricEvent) -> None:
|
||||
# Add metric as an event to the current span
|
||||
try:
|
||||
|
|
@ -571,7 +582,16 @@ class Telemetry:
|
|||
# Log to OpenTelemetry meter if available
|
||||
if self.meter is None:
|
||||
return
|
||||
if isinstance(event.value, int):
|
||||
|
||||
# Use histograms for token-related metrics (per-request measurements)
|
||||
# Use counters for other cumulative metrics
|
||||
token_metrics = {"prompt_tokens", "completion_tokens", "total_tokens"}
|
||||
|
||||
if event.metric in token_metrics:
|
||||
# Token metrics are per-request measurements, use histogram
|
||||
histogram = self._get_or_create_histogram(event.metric, event.unit)
|
||||
histogram.record(event.value, attributes=_clean_attributes(event.attributes))
|
||||
elif isinstance(event.value, int):
|
||||
counter = self._get_or_create_counter(event.metric, event.unit)
|
||||
counter.add(event.value, attributes=_clean_attributes(event.attributes))
|
||||
elif isinstance(event.value, float):
|
||||
|
|
|
|||
|
|
@ -6,7 +6,8 @@
|
|||
|
||||
"""Shared helpers for telemetry test collectors."""
|
||||
|
||||
from collections.abc import Iterable, Mapping
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -19,29 +20,13 @@ class MetricStub:
|
|||
value: Any
|
||||
attributes: dict[str, Any] | None = None
|
||||
|
||||
def get_value(self) -> Any:
|
||||
"""Get the metric value."""
|
||||
return self.value
|
||||
|
||||
def get_name(self) -> str:
|
||||
"""Get the metric name."""
|
||||
return self.name
|
||||
|
||||
def get_attributes(self) -> dict[str, Any]:
|
||||
"""Get metric attributes as a dictionary."""
|
||||
return self.attributes or {}
|
||||
|
||||
def get_attribute(self, key: str) -> Any:
|
||||
"""Get a specific attribute value by key."""
|
||||
return self.get_attributes().get(key)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SpanStub:
|
||||
"""Unified span interface for both in-memory and OTLP collectors."""
|
||||
|
||||
name: str
|
||||
attributes: Mapping[str, Any] | None = None
|
||||
attributes: dict[str, Any] | None = None
|
||||
resource_attributes: dict[str, Any] | None = None
|
||||
events: list[dict[str, Any]] | None = None
|
||||
trace_id: str | None = None
|
||||
|
|
@ -54,19 +39,6 @@ class SpanStub:
|
|||
return None
|
||||
return type("Context", (), {"trace_id": int(self.trace_id, 16)})()
|
||||
|
||||
def get_attributes(self) -> dict[str, Any]:
|
||||
"""Get span attributes as a dictionary.
|
||||
|
||||
Handles different attribute types (mapping, dict, etc.) and returns
|
||||
a consistent dictionary format.
|
||||
"""
|
||||
return BaseTelemetryCollector._convert_attributes_to_dict(self.attributes)
|
||||
|
||||
def get_attribute(self, key: str) -> Any:
|
||||
"""Get a specific attribute value by key."""
|
||||
attrs = self.get_attributes()
|
||||
return attrs.get(key)
|
||||
|
||||
def get_trace_id(self) -> str | None:
|
||||
"""Get trace ID in hex format.
|
||||
|
||||
|
|
@ -79,30 +51,42 @@ class SpanStub:
|
|||
|
||||
def has_message(self, text: str) -> bool:
|
||||
"""Check if span contains a specific message in its args."""
|
||||
args = self.get_attribute("__args__")
|
||||
if self.attributes is None:
|
||||
return False
|
||||
args = self.attributes.get("__args__")
|
||||
if not args or not isinstance(args, str):
|
||||
return False
|
||||
return text in args
|
||||
|
||||
def is_root_span(self) -> bool:
|
||||
"""Check if this is a root span."""
|
||||
return self.get_attribute("__root__") is True
|
||||
if self.attributes is None:
|
||||
return False
|
||||
return self.attributes.get("__root__") is True
|
||||
|
||||
def is_autotraced(self) -> bool:
|
||||
"""Check if this span was automatically traced."""
|
||||
return self.get_attribute("__autotraced__") is True
|
||||
if self.attributes is None:
|
||||
return False
|
||||
return self.attributes.get("__autotraced__") is True
|
||||
|
||||
def get_span_type(self) -> str | None:
|
||||
"""Get the span type (async, sync, async_generator)."""
|
||||
return self.get_attribute("__type__")
|
||||
if self.attributes is None:
|
||||
return None
|
||||
return self.attributes.get("__type__")
|
||||
|
||||
def get_class_method(self) -> tuple[str | None, str | None]:
|
||||
"""Get the class and method names for autotraced spans."""
|
||||
return (self.get_attribute("__class__"), self.get_attribute("__method__"))
|
||||
if self.attributes is None:
|
||||
return None, None
|
||||
return (self.attributes.get("__class__"), self.attributes.get("__method__"))
|
||||
|
||||
def get_location(self) -> str | None:
|
||||
"""Get the location (library_client, server) for root spans."""
|
||||
return self.get_attribute("__location__")
|
||||
if self.attributes is None:
|
||||
return None
|
||||
return self.attributes.get("__location__")
|
||||
|
||||
|
||||
def _value_to_python(value: Any) -> Any:
|
||||
|
|
@ -152,8 +136,6 @@ class BaseTelemetryCollector:
|
|||
timeout: float = 5.0,
|
||||
poll_interval: float = 0.05,
|
||||
) -> tuple[SpanStub, ...]:
|
||||
import time
|
||||
|
||||
deadline = time.time() + timeout
|
||||
min_count = expected_count if expected_count is not None else 1
|
||||
last_len: int | None = None
|
||||
|
|
@ -188,8 +170,8 @@ class BaseTelemetryCollector:
|
|||
poll_interval: float = 0.05,
|
||||
) -> dict[str, MetricStub]:
|
||||
"""Get metrics with polling until metrics are available or timeout is reached."""
|
||||
import time
|
||||
|
||||
# metrics need to be collected since get requests delete stored metrics
|
||||
deadline = time.time() + timeout
|
||||
min_count = expected_count if expected_count is not None else 1
|
||||
accumulated_metrics = {}
|
||||
|
|
@ -197,14 +179,11 @@ class BaseTelemetryCollector:
|
|||
while time.time() < deadline:
|
||||
current_metrics = self._snapshot_metrics()
|
||||
if current_metrics:
|
||||
# Accumulate new metrics without losing existing ones
|
||||
for metric in current_metrics:
|
||||
metric_name = metric.get_name()
|
||||
metric_name = metric.name
|
||||
if metric_name not in accumulated_metrics:
|
||||
accumulated_metrics[metric_name] = metric
|
||||
else:
|
||||
# If we already have this metric, keep the latest one
|
||||
# (in case metrics are updated with new values)
|
||||
accumulated_metrics[metric_name] = metric
|
||||
|
||||
# Check if we have enough metrics
|
||||
|
|
@ -258,7 +237,7 @@ class BaseTelemetryCollector:
|
|||
This helper reduces code duplication between collectors.
|
||||
"""
|
||||
trace_id, span_id = BaseTelemetryCollector._extract_trace_span_ids(span)
|
||||
attributes = BaseTelemetryCollector._convert_attributes_to_dict(span.attributes)
|
||||
attributes = BaseTelemetryCollector._convert_attributes_to_dict(span.attributes) or {}
|
||||
|
||||
return SpanStub(
|
||||
name=span.name,
|
||||
|
|
@ -273,7 +252,7 @@ class BaseTelemetryCollector:
|
|||
|
||||
This helper handles the different structure of protobuf spans.
|
||||
"""
|
||||
attributes = attributes_to_dict(span.attributes)
|
||||
attributes = attributes_to_dict(span.attributes) or {}
|
||||
events = events_to_list(span.events) if span.events else None
|
||||
trace_id = span.trace_id.hex() if span.trace_id else None
|
||||
span_id = span.span_id.hex() if span.span_id else None
|
||||
|
|
@ -300,12 +279,22 @@ class BaseTelemetryCollector:
|
|||
return None
|
||||
|
||||
# Get the value from the first data point
|
||||
value = metric.data.data_points[0].value
|
||||
data_point = metric.data.data_points[0]
|
||||
|
||||
# Handle different metric types
|
||||
if hasattr(data_point, "value"):
|
||||
# Counter or Gauge
|
||||
value = data_point.value
|
||||
elif hasattr(data_point, "sum"):
|
||||
# Histogram - use the sum of all recorded values
|
||||
value = data_point.sum
|
||||
else:
|
||||
return None
|
||||
|
||||
# Extract attributes if available
|
||||
attributes = {}
|
||||
if hasattr(metric.data.data_points[0], "attributes"):
|
||||
attrs = metric.data.data_points[0].attributes
|
||||
if hasattr(data_point, "attributes"):
|
||||
attrs = data_point.attributes
|
||||
if attrs is not None and hasattr(attrs, "items"):
|
||||
attributes = dict(attrs.items())
|
||||
elif attrs is not None and not isinstance(attrs, dict):
|
||||
|
|
@ -314,9 +303,48 @@ class BaseTelemetryCollector:
|
|||
return MetricStub(
|
||||
name=metric.name,
|
||||
value=value,
|
||||
attributes=attributes if attributes else None,
|
||||
attributes=attributes or {},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _create_metric_stub_from_protobuf(metric: Any) -> MetricStub | None:
|
||||
"""Create MetricStub from protobuf metric object.
|
||||
|
||||
Protobuf metrics have a different structure than OpenTelemetry metrics.
|
||||
They can have sum, gauge, or histogram data.
|
||||
"""
|
||||
if not hasattr(metric, "name"):
|
||||
return None
|
||||
|
||||
# Try to extract value from different metric types
|
||||
for metric_type in ["sum", "gauge", "histogram"]:
|
||||
if hasattr(metric, metric_type):
|
||||
metric_data = getattr(metric, metric_type)
|
||||
if metric_data and hasattr(metric_data, "data_points"):
|
||||
data_points = metric_data.data_points
|
||||
if data_points and len(data_points) > 0:
|
||||
data_point = data_points[0]
|
||||
|
||||
# Extract attributes first (needed for all metric types)
|
||||
attributes = (
|
||||
attributes_to_dict(data_point.attributes) if hasattr(data_point, "attributes") else {}
|
||||
)
|
||||
|
||||
# Extract value based on metric type
|
||||
if metric_type == "sum":
|
||||
value = data_point.as_int
|
||||
elif metric_type == "gauge":
|
||||
value = data_point.as_double
|
||||
else: # histogram
|
||||
value = data_point.sum
|
||||
|
||||
return MetricStub(
|
||||
name=metric.name,
|
||||
value=value,
|
||||
attributes=attributes,
|
||||
)
|
||||
return None
|
||||
|
||||
def clear(self) -> None:
|
||||
self._clear_impl()
|
||||
|
||||
|
|
|
|||
|
|
@ -11,7 +11,6 @@ import os
|
|||
import threading
|
||||
from http.server import BaseHTTPRequestHandler, HTTPServer
|
||||
from socketserver import ThreadingMixIn
|
||||
from typing import Any
|
||||
|
||||
from opentelemetry.proto.collector.metrics.v1.metrics_service_pb2 import ExportMetricsServiceRequest
|
||||
from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import ExportTraceServiceRequest
|
||||
|
|
@ -83,54 +82,6 @@ class OtlpHttpTestCollector(BaseTelemetryCollector):
|
|||
self._spans.clear()
|
||||
self._metrics.clear()
|
||||
|
||||
def _create_metric_stub_from_protobuf(self, metric: Any) -> MetricStub | None:
|
||||
"""Create MetricStub from protobuf metric object.
|
||||
|
||||
Protobuf metrics have a different structure than OpenTelemetry metrics.
|
||||
They can have sum, gauge, or histogram data.
|
||||
"""
|
||||
if not hasattr(metric, "name"):
|
||||
return None
|
||||
|
||||
# Try to extract value from different metric types
|
||||
for metric_type in ["sum", "gauge", "histogram"]:
|
||||
if hasattr(metric, metric_type):
|
||||
metric_data = getattr(metric, metric_type)
|
||||
if metric_data and hasattr(metric_data, "data_points"):
|
||||
data_points = metric_data.data_points
|
||||
if data_points and len(data_points) > 0:
|
||||
data_point = data_points[0]
|
||||
|
||||
# Extract value based on metric type
|
||||
if metric_type == "sum":
|
||||
value = data_point.as_int
|
||||
elif metric_type == "gauge":
|
||||
value = data_point.as_double
|
||||
else: # histogram
|
||||
value = data_point.count
|
||||
|
||||
# Extract attributes if available
|
||||
attributes = self._extract_attributes_from_data_point(data_point)
|
||||
|
||||
return MetricStub(
|
||||
name=metric.name,
|
||||
value=value,
|
||||
attributes=attributes if attributes else None,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def _extract_attributes_from_data_point(self, data_point: Any) -> dict[str, Any]:
|
||||
"""Extract attributes from a protobuf data point."""
|
||||
if not hasattr(data_point, "attributes"):
|
||||
return {}
|
||||
|
||||
attrs = data_point.attributes
|
||||
if not attrs:
|
||||
return {}
|
||||
|
||||
return {kv.key: kv.value.string_value or kv.value.int_value or kv.value.double_value for kv in attrs}
|
||||
|
||||
def shutdown(self) -> None:
|
||||
self._server.shutdown()
|
||||
self._server.server_close()
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
|
|||
span
|
||||
for span in reversed(spans)
|
||||
if span.get_span_type() == "async_generator"
|
||||
and span.get_attribute("chunk_count")
|
||||
and span.attributes.get("chunk_count")
|
||||
and span.has_message("Test trace openai 1")
|
||||
),
|
||||
None,
|
||||
|
|
@ -40,7 +40,7 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
|
|||
|
||||
assert async_generator_span is not None
|
||||
|
||||
raw_chunk_count = async_generator_span.get_attribute("chunk_count")
|
||||
raw_chunk_count = async_generator_span.attributes.get("chunk_count")
|
||||
assert raw_chunk_count is not None
|
||||
chunk_count = int(raw_chunk_count)
|
||||
|
||||
|
|
@ -85,7 +85,7 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
logged_model_ids = []
|
||||
|
||||
for span in spans:
|
||||
attrs = span.get_attributes()
|
||||
attrs = span.attributes
|
||||
assert attrs is not None
|
||||
|
||||
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
|
||||
|
|
@ -98,7 +98,7 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
assert class_name and method_name
|
||||
assert span.get_span_type() in ["async", "sync", "async_generator"]
|
||||
|
||||
args_field = span.get_attribute("__args__")
|
||||
args_field = span.attributes.get("__args__")
|
||||
if args_field:
|
||||
args = json.loads(args_field)
|
||||
if "model_id" in args:
|
||||
|
|
@ -115,37 +115,32 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
# Filter metrics to only those from the specific model used in the request
|
||||
# This prevents issues when multiple metrics with the same name exist from different models
|
||||
# (e.g., when safety models like llama-guard are also called)
|
||||
model_metrics = {}
|
||||
inference_model_metrics = {}
|
||||
all_model_ids = set()
|
||||
|
||||
for name, metric in metrics.items():
|
||||
if name in expected_metrics:
|
||||
model_id = metric.get_attribute("model_id")
|
||||
model_id = metric.attributes.get("model_id")
|
||||
all_model_ids.add(model_id)
|
||||
# Only include metrics from the specific model used in the test request
|
||||
if model_id == text_model_id:
|
||||
model_metrics[name] = metric
|
||||
|
||||
# Provide helpful error message if we have metrics from multiple models
|
||||
if len(all_model_ids) > 1:
|
||||
print(f"Note: Found metrics from multiple models: {sorted(all_model_ids)}")
|
||||
print(f"Filtering to only metrics from test model: {text_model_id}")
|
||||
inference_model_metrics[name] = metric
|
||||
|
||||
# Verify expected metrics are present for our specific model
|
||||
for metric_name in expected_metrics:
|
||||
assert metric_name in model_metrics, (
|
||||
assert metric_name in inference_model_metrics, (
|
||||
f"Expected metric {metric_name} for model {text_model_id} not found. "
|
||||
f"Available models: {sorted(all_model_ids)}, "
|
||||
f"Available metrics for {text_model_id}: {list(model_metrics.keys())}"
|
||||
f"Available metrics for {text_model_id}: {list(inference_model_metrics.keys())}"
|
||||
)
|
||||
|
||||
# Verify metric values match usage data
|
||||
assert model_metrics["completion_tokens"].get_value() == usage["completion_tokens"], (
|
||||
f"Expected {usage['completion_tokens']} for completion_tokens, but got {model_metrics['completion_tokens'].get_value()}"
|
||||
assert inference_model_metrics["completion_tokens"].value == usage["completion_tokens"], (
|
||||
f"Expected {usage['completion_tokens']} for completion_tokens, but got {inference_model_metrics['completion_tokens'].value}"
|
||||
)
|
||||
assert model_metrics["total_tokens"].get_value() == usage["total_tokens"], (
|
||||
f"Expected {usage['total_tokens']} for total_tokens, but got {model_metrics['total_tokens'].get_value()}"
|
||||
assert inference_model_metrics["total_tokens"].value == usage["total_tokens"], (
|
||||
f"Expected {usage['total_tokens']} for total_tokens, but got {inference_model_metrics['total_tokens'].value}"
|
||||
)
|
||||
assert model_metrics["prompt_tokens"].get_value() == usage["prompt_tokens"], (
|
||||
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {model_metrics['prompt_tokens'].get_value()}"
|
||||
assert inference_model_metrics["prompt_tokens"].value == usage["prompt_tokens"], (
|
||||
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {inference_model_metrics['prompt_tokens'].value}"
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue