cli -- llama inference configure

This commit is contained in:
Hardik Shah 2024-07-21 01:16:44 -07:00
parent 0df57c4447
commit 23fe353e4a
3 changed files with 94 additions and 15 deletions

View file

@ -0,0 +1,80 @@
import argparse
import os
import textwrap
from pathlib import Path
from toolchain.cli.subcommand import Subcommand
CONFIGS_BASE_DIR = f"{os.path.expanduser('~')}/.llama/configs/"
class InferenceConfigure(Subcommand):
"""Llama cli for configuring llama toolchain configs"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"configure",
prog="llama inference configure",
description="Configure llama toolchain inference configs",
epilog=textwrap.dedent(
"""
Example:
llama inference configure
"""
),
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_inference_configure_cmd)
def _add_arguments(self):
pass
def read_user_inputs(self):
checkpoint_dir = input("Enter the checkpoint directory for the model (e.g., ~/.llama/checkpoints/Meta-Llama-3-8B/): ")
model_parallel_size = input("Enter model parallel size (e.g., 1 for 8B / 8 for 70B and 405B): ")
return checkpoint_dir, model_parallel_size
def write_output_yaml(
self,
checkpoint_dir,
model_parallel_size,
yaml_output_path
):
yaml_content = textwrap.dedent(f"""
model_inference_config:
impl_type: "inline"
inline_config:
checkpoint_type: "pytorch"
checkpoint_dir: {checkpoint_dir}/
tokenizer_path: {checkpoint_dir}/tokenizer.model
model_parallel_size: {model_parallel_size}
max_seq_len: 2048
max_batch_size: 1
""")
with open(yaml_output_path, 'w') as yaml_file:
yaml_file.write(yaml_content.strip())
print(f"YAML configuration has been written to {yaml_output_path}")
def _run_inference_configure_cmd(self, args: argparse.Namespace) -> None:
checkpoint_dir, model_parallel_size = self.read_user_inputs()
checkpoint_dir = os.path.expanduser(checkpoint_dir)
if not (
checkpoint_dir.endswith("original") or
checkpoint_dir.endswith("original/")
):
checkpoint_dir = os.path.join(checkpoint_dir, "original")
os.makedirs(CONFIGS_BASE_DIR, exist_ok=True)
yaml_output_path = Path(CONFIGS_BASE_DIR) / "inference.yaml"
self.write_output_yaml(
checkpoint_dir,
model_parallel_size,
yaml_output_path,
)