mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
cli -- llama inference configure
This commit is contained in:
parent
0df57c4447
commit
23fe353e4a
3 changed files with 94 additions and 15 deletions
|
@ -9,7 +9,7 @@ from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
|||
from toolchain.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
DEFAULT_OUTPUT_DIR = "/tmp/llama_toolchain_cache/"
|
||||
DEFAULT_CHECKPOINT_DIR = f"{os.path.expanduser('~')}/.llama/checkpoints/"
|
||||
|
||||
|
||||
class Download(Subcommand):
|
||||
|
@ -43,13 +43,6 @@ class Download(Subcommand):
|
|||
type=str,
|
||||
help="Name of the repository on Hugging Face Hub eg. llhf/Meta-Llama-3.1-70B-Instruct",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--output-dir",
|
||||
type=Path,
|
||||
required=False,
|
||||
default=None,
|
||||
help=f"Directory in which to save the model. Defaults to `{DEFAULT_OUTPUT_DIR}<model_name>`.",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--hf-token",
|
||||
type=str,
|
||||
|
@ -57,18 +50,21 @@ class Download(Subcommand):
|
|||
default=os.getenv("HF_TOKEN", None),
|
||||
help="Hugging Face API token. Needed for gated models like Llama2. Will also try to read environment variable `HF_TOKEN` as default.",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--ignore-patterns",
|
||||
type=str,
|
||||
required=False,
|
||||
default="*.safetensors",
|
||||
help="If provided, files matching any of the patterns are not downloaded. Defaults to ignoring "
|
||||
"safetensors files to avoid downloading duplicate weights.",
|
||||
)
|
||||
|
||||
def _run_download_cmd(self, args: argparse.Namespace):
|
||||
model_name = args.repo_id.split("/")[-1]
|
||||
|
||||
os.makedirs(DEFAULT_OUTPUT_DIR, exist_ok=True)
|
||||
output_dir = args.output_dir
|
||||
model_name = args.repo_id.split("/")[-1]
|
||||
if output_dir is None:
|
||||
output_dir = Path(DEFAULT_OUTPUT_DIR) / model_name
|
||||
else:
|
||||
output_dir = Path(output_dir) / model_name
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
output_dir = Path(output_dir) / model_name
|
||||
try:
|
||||
true_output_dir = snapshot_download(
|
||||
args.repo_id,
|
||||
|
@ -76,6 +72,7 @@ class Download(Subcommand):
|
|||
# "auto" will download to cache_dir and symlink files to local_dir
|
||||
# avoiding unnecessary duplicate copies
|
||||
local_dir_use_symlinks="auto",
|
||||
ignore_patterns=args.ignore_patterns,
|
||||
token=args.hf_token,
|
||||
)
|
||||
except GatedRepoError:
|
||||
|
|
80
toolchain/cli/inference/configure.py
Normal file
80
toolchain/cli/inference/configure.py
Normal file
|
@ -0,0 +1,80 @@
|
|||
import argparse
|
||||
import os
|
||||
import textwrap
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from toolchain.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
CONFIGS_BASE_DIR = f"{os.path.expanduser('~')}/.llama/configs/"
|
||||
|
||||
class InferenceConfigure(Subcommand):
|
||||
"""Llama cli for configuring llama toolchain configs"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"configure",
|
||||
prog="llama inference configure",
|
||||
description="Configure llama toolchain inference configs",
|
||||
epilog=textwrap.dedent(
|
||||
"""
|
||||
Example:
|
||||
llama inference configure
|
||||
"""
|
||||
),
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_inference_configure_cmd)
|
||||
|
||||
def _add_arguments(self):
|
||||
pass
|
||||
|
||||
def read_user_inputs(self):
|
||||
checkpoint_dir = input("Enter the checkpoint directory for the model (e.g., ~/.llama/checkpoints/Meta-Llama-3-8B/): ")
|
||||
model_parallel_size = input("Enter model parallel size (e.g., 1 for 8B / 8 for 70B and 405B): ")
|
||||
|
||||
return checkpoint_dir, model_parallel_size
|
||||
|
||||
def write_output_yaml(
|
||||
self,
|
||||
checkpoint_dir,
|
||||
model_parallel_size,
|
||||
yaml_output_path
|
||||
):
|
||||
yaml_content = textwrap.dedent(f"""
|
||||
model_inference_config:
|
||||
impl_type: "inline"
|
||||
inline_config:
|
||||
checkpoint_type: "pytorch"
|
||||
checkpoint_dir: {checkpoint_dir}/
|
||||
tokenizer_path: {checkpoint_dir}/tokenizer.model
|
||||
model_parallel_size: {model_parallel_size}
|
||||
max_seq_len: 2048
|
||||
max_batch_size: 1
|
||||
""")
|
||||
with open(yaml_output_path, 'w') as yaml_file:
|
||||
yaml_file.write(yaml_content.strip())
|
||||
|
||||
print(f"YAML configuration has been written to {yaml_output_path}")
|
||||
|
||||
def _run_inference_configure_cmd(self, args: argparse.Namespace) -> None:
|
||||
checkpoint_dir, model_parallel_size = self.read_user_inputs()
|
||||
checkpoint_dir = os.path.expanduser(checkpoint_dir)
|
||||
|
||||
if not (
|
||||
checkpoint_dir.endswith("original") or
|
||||
checkpoint_dir.endswith("original/")
|
||||
):
|
||||
checkpoint_dir = os.path.join(checkpoint_dir, "original")
|
||||
|
||||
os.makedirs(CONFIGS_BASE_DIR, exist_ok=True)
|
||||
yaml_output_path = Path(CONFIGS_BASE_DIR) / "inference.yaml"
|
||||
|
||||
self.write_output_yaml(
|
||||
checkpoint_dir,
|
||||
model_parallel_size,
|
||||
yaml_output_path,
|
||||
)
|
|
@ -1,6 +1,7 @@
|
|||
import argparse
|
||||
import textwrap
|
||||
|
||||
from toolchain.cli.inference.configure import InferenceConfigure
|
||||
from toolchain.cli.inference.start import InferenceStart
|
||||
from toolchain.cli.subcommand import Subcommand
|
||||
|
||||
|
@ -26,3 +27,4 @@ class InferenceParser(Subcommand):
|
|||
|
||||
# Add sub-commandsa
|
||||
InferenceStart.create(subparsers)
|
||||
InferenceConfigure.create(subparsers)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue