Update more distribution docs to be simpler and partially codegen'ed

This commit is contained in:
Ashwin Bharambe 2024-11-20 14:44:04 -08:00
parent e84d4436b5
commit 2411a44833
51 changed files with 1188 additions and 291 deletions

View file

@ -1,45 +0,0 @@
version: '2'
image_name: local
name: bedrock
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: bedrock0
provider_type: remote::bedrock
config:
aws_access_key_id: <AWS_ACCESS_KEY_ID>
aws_secret_access_key: <AWS_SECRET_ACCESS_KEY>
aws_session_token: <AWS_SESSION_TOKEN>
region_name: <AWS_REGION>
memory:
- provider_id: meta0
provider_type: inline::meta-reference
config: {}
safety:
- provider_id: bedrock0
provider_type: remote::bedrock
config:
aws_access_key_id: <AWS_ACCESS_KEY_ID>
aws_secret_access_key: <AWS_SECRET_ACCESS_KEY>
aws_session_token: <AWS_SESSION_TOKEN>
region_name: <AWS_REGION>
agents:
- provider_id: meta0
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: inline::meta-reference
config: {}

View file

@ -0,0 +1 @@
../../llama_stack/templates/bedrock/run.yaml

View file

@ -1 +0,0 @@
../../llama_stack/templates/databricks/build.yaml

View file

@ -1,4 +1,32 @@
{
"hf-serverless": [
"aiohttp",
"aiosqlite",
"blobfile",
"chardet",
"chromadb-client",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"matplotlib",
"nltk",
"numpy",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"together": [
"aiosqlite",
"blobfile",
@ -26,6 +54,33 @@
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"vllm-gpu": [
"aiosqlite",
"blobfile",
"chardet",
"chromadb-client",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"nltk",
"numpy",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"vllm",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"remote-vllm": [
"aiosqlite",
"blobfile",
@ -108,6 +163,33 @@
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"bedrock": [
"aiosqlite",
"blobfile",
"boto3",
"chardet",
"chromadb-client",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"nltk",
"numpy",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"meta-reference-gpu": [
"accelerate",
"aiosqlite",
@ -167,5 +249,33 @@
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"hf-endpoint": [
"aiohttp",
"aiosqlite",
"blobfile",
"chardet",
"chromadb-client",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"matplotlib",
"nltk",
"numpy",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
]
}

View file

@ -1 +0,0 @@
../../llama_stack/templates/hf-endpoint/build.yaml

View file

@ -1 +0,0 @@
../../llama_stack/templates/hf-serverless/build.yaml

View file

@ -1 +0,0 @@
../../llama_stack/templates/ollama/build.yaml

View file

@ -1,48 +0,0 @@
services:
ollama:
image: ollama/ollama:latest
network_mode: "host"
volumes:
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
ports:
- "11434:11434"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=0
command: []
deploy:
resources:
reservations:
devices:
- driver: nvidia
# that's the closest analogue to --gpus; provide
# an integer amount of devices or 'all'
count: 1
# Devices are reserved using a list of capabilities, making
# capabilities the only required field. A device MUST
# satisfy all the requested capabilities for a successful
# reservation.
capabilities: [gpu]
runtime: nvidia
llamastack:
depends_on:
- ollama
image: llamastack/distribution-ollama
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
# Link to ollama run.yaml file
- ./run.yaml:/root/llamastack-run-ollama.yaml
ports:
- "5000:5000"
# Hack: wait for ollama server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-ollama.yaml"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s
volumes:
ollama:

View file

@ -1,46 +0,0 @@
version: '2'
image_name: local
docker_image: null
conda_env: local
apis:
- shields
- agents
- models
- memory
- memory_banks
- inference
- safety
providers:
inference:
- provider_id: ollama
provider_type: remote::ollama
config:
url: ${env.OLLAMA_URL:http://127.0.0.1:11434}
safety:
- provider_id: meta0
provider_type: inline::llama-guard
config:
excluded_categories: []
memory:
- provider_id: meta0
provider_type: inline::meta-reference
config: {}
agents:
- provider_id: meta0
provider_type: inline::meta-reference
config:
persistence_store:
namespace: null
type: sqlite
db_path: ~/.llama/runtime/kvstore.db
telemetry:
- provider_id: meta0
provider_type: inline::meta-reference
config: {}
models:
- model_id: ${env.INFERENCE_MODEL:Llama3.2-3B-Instruct}
provider_id: ollama
- model_id: ${env.SAFETY_MODEL:Llama-Guard-3-1B}
provider_id: ollama
shields:
- shield_id: ${env.SAFETY_MODEL:Llama-Guard-3-1B}