mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-11 19:56:03 +00:00
address feedback
This commit is contained in:
parent
9347e49414
commit
24667e43e0
3 changed files with 17 additions and 14 deletions
|
|
@ -55,6 +55,9 @@ def _create_s3_client(config: S3FilesImplConfig) -> S3Client:
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Both cast and type:ignore are needed here:
|
||||||
|
# - cast tells mypy the return type for downstream usage (S3Client vs generic client)
|
||||||
|
# - type:ignore suppresses the call-overload error from boto3's complex overloaded signatures
|
||||||
return cast("S3Client", boto3.client("s3", **s3_config)) # type: ignore[call-overload]
|
return cast("S3Client", boto3.client("s3", **s3_config)) # type: ignore[call-overload]
|
||||||
|
|
||||||
except (BotoCoreError, NoCredentialsError) as e:
|
except (BotoCoreError, NoCredentialsError) as e:
|
||||||
|
|
|
||||||
|
|
@ -37,21 +37,21 @@ class GeminiInferenceAdapter(OpenAIMixin):
|
||||||
Override embeddings method to handle Gemini's missing usage statistics.
|
Override embeddings method to handle Gemini's missing usage statistics.
|
||||||
Gemini's embedding API doesn't return usage information, so we provide default values.
|
Gemini's embedding API doesn't return usage information, so we provide default values.
|
||||||
"""
|
"""
|
||||||
# Build kwargs conditionally to avoid NotGiven/Omit type mismatch
|
# Build request params conditionally to avoid NotGiven/Omit type mismatch
|
||||||
kwargs: dict[str, Any] = {
|
request_params: dict[str, Any] = {
|
||||||
"model": await self._get_provider_model_id(params.model),
|
"model": await self._get_provider_model_id(params.model),
|
||||||
"input": params.input,
|
"input": params.input,
|
||||||
}
|
}
|
||||||
if params.encoding_format is not None:
|
if params.encoding_format is not None:
|
||||||
kwargs["encoding_format"] = params.encoding_format
|
request_params["encoding_format"] = params.encoding_format
|
||||||
if params.dimensions is not None:
|
if params.dimensions is not None:
|
||||||
kwargs["dimensions"] = params.dimensions
|
request_params["dimensions"] = params.dimensions
|
||||||
if params.user is not None:
|
if params.user is not None:
|
||||||
kwargs["user"] = params.user
|
request_params["user"] = params.user
|
||||||
if params.model_extra:
|
if params.model_extra:
|
||||||
kwargs["extra_body"] = params.model_extra
|
request_params["extra_body"] = params.model_extra
|
||||||
|
|
||||||
response = await self.client.embeddings.create(**kwargs)
|
response = await self.client.embeddings.create(**request_params)
|
||||||
|
|
||||||
data = []
|
data = []
|
||||||
for i, embedding_data in enumerate(response.data):
|
for i, embedding_data in enumerate(response.data):
|
||||||
|
|
|
||||||
|
|
@ -351,22 +351,22 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
||||||
"""
|
"""
|
||||||
Direct OpenAI embeddings API call.
|
Direct OpenAI embeddings API call.
|
||||||
"""
|
"""
|
||||||
# Build kwargs conditionally to avoid NotGiven/Omit type mismatch
|
# Build request params conditionally to avoid NotGiven/Omit type mismatch
|
||||||
# The OpenAI SDK uses Omit in signatures but NOT_GIVEN has type NotGiven
|
# The OpenAI SDK uses Omit in signatures but NOT_GIVEN has type NotGiven
|
||||||
kwargs: dict[str, Any] = {
|
request_params: dict[str, Any] = {
|
||||||
"model": await self._get_provider_model_id(params.model),
|
"model": await self._get_provider_model_id(params.model),
|
||||||
"input": params.input,
|
"input": params.input,
|
||||||
}
|
}
|
||||||
if params.encoding_format is not None:
|
if params.encoding_format is not None:
|
||||||
kwargs["encoding_format"] = params.encoding_format
|
request_params["encoding_format"] = params.encoding_format
|
||||||
if params.dimensions is not None:
|
if params.dimensions is not None:
|
||||||
kwargs["dimensions"] = params.dimensions
|
request_params["dimensions"] = params.dimensions
|
||||||
if params.user is not None:
|
if params.user is not None:
|
||||||
kwargs["user"] = params.user
|
request_params["user"] = params.user
|
||||||
if params.model_extra:
|
if params.model_extra:
|
||||||
kwargs["extra_body"] = params.model_extra
|
request_params["extra_body"] = params.model_extra
|
||||||
|
|
||||||
response = await self.client.embeddings.create(**kwargs)
|
response = await self.client.embeddings.create(**request_params)
|
||||||
|
|
||||||
data = []
|
data = []
|
||||||
for i, embedding_data in enumerate(response.data):
|
for i, embedding_data in enumerate(response.data):
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue